关于全球森林模拟和气候控制的社论注释

Q4 Agricultural and Biological Sciences 林业科学研究 Pub Date : 2021-01-01 DOI:10.35248/2168-9776.21.10.249
H. Bhusan
{"title":"关于全球森林模拟和气候控制的社论注释","authors":"H. Bhusan","doi":"10.35248/2168-9776.21.10.249","DOIUrl":null,"url":null,"abstract":"The sophistication of forest structures plays a key role in controlling the roles of forest ecosystems and has a strong impact on biodiversity. Yet, knowledge of global forest structural complexity dynamics and determinants remains scarce. We measure the structural complexity of boreal complexity using a structural complexity index based on terrestrial laser scanning, temperate, subtropical and tropical primary forests. We find that annual precipitation and precipitation seasonality (R2 = 0.89) is primarily explained by the global heterogeneity in forest structural complexity. We model the potential structural complexity across biomes using the structural complexity of primary forests as a benchmark and present a global map of the potential structural complexity of the Eco regions of the Earth's forest. Our studies show distinct latitudinal trends of forest structure and illustrate that high structural complexity hotspots correlate with plant diversity hotspots. Our findings propose spatially comparing shifts in forest structure with climate change within and through biomes, taking into account the mechanistic underpinnings of forest structural complexity. The To help forecast how biodiversity","PeriodicalId":35920,"journal":{"name":"林业科学研究","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Editorial Note on Global Forest Simulations and Climate Controls\",\"authors\":\"H. Bhusan\",\"doi\":\"10.35248/2168-9776.21.10.249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sophistication of forest structures plays a key role in controlling the roles of forest ecosystems and has a strong impact on biodiversity. Yet, knowledge of global forest structural complexity dynamics and determinants remains scarce. We measure the structural complexity of boreal complexity using a structural complexity index based on terrestrial laser scanning, temperate, subtropical and tropical primary forests. We find that annual precipitation and precipitation seasonality (R2 = 0.89) is primarily explained by the global heterogeneity in forest structural complexity. We model the potential structural complexity across biomes using the structural complexity of primary forests as a benchmark and present a global map of the potential structural complexity of the Eco regions of the Earth's forest. Our studies show distinct latitudinal trends of forest structure and illustrate that high structural complexity hotspots correlate with plant diversity hotspots. Our findings propose spatially comparing shifts in forest structure with climate change within and through biomes, taking into account the mechanistic underpinnings of forest structural complexity. The To help forecast how biodiversity\",\"PeriodicalId\":35920,\"journal\":{\"name\":\"林业科学研究\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"林业科学研究\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.35248/2168-9776.21.10.249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"林业科学研究","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.35248/2168-9776.21.10.249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

森林结构的复杂性在控制森林生态系统的作用方面起着关键作用,并对生物多样性产生强烈影响。然而,关于全球森林结构复杂性、动态和决定因素的知识仍然很少。利用基于陆地激光扫描、温带、亚热带和热带原生林的结构复杂性指数来衡量北方复杂性的结构复杂性。研究发现,森林结构复杂性的全球异质性主要解释了年降水量和降水季节性(R2 = 0.89)。我们以原始森林的结构复杂性为基准,建立了跨生物群系的潜在结构复杂性模型,并提出了地球森林生态区域潜在结构复杂性的全球地图。我们的研究显示了森林结构的明显的纬度趋势,并说明了高结构复杂性热点与植物多样性热点相关。考虑到森林结构复杂性的机制基础,我们的研究结果建议将森林结构的变化与生物群系内部和通过生物群系的气候变化进行空间比较。以帮助预测生物多样性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Editorial Note on Global Forest Simulations and Climate Controls
The sophistication of forest structures plays a key role in controlling the roles of forest ecosystems and has a strong impact on biodiversity. Yet, knowledge of global forest structural complexity dynamics and determinants remains scarce. We measure the structural complexity of boreal complexity using a structural complexity index based on terrestrial laser scanning, temperate, subtropical and tropical primary forests. We find that annual precipitation and precipitation seasonality (R2 = 0.89) is primarily explained by the global heterogeneity in forest structural complexity. We model the potential structural complexity across biomes using the structural complexity of primary forests as a benchmark and present a global map of the potential structural complexity of the Eco regions of the Earth's forest. Our studies show distinct latitudinal trends of forest structure and illustrate that high structural complexity hotspots correlate with plant diversity hotspots. Our findings propose spatially comparing shifts in forest structure with climate change within and through biomes, taking into account the mechanistic underpinnings of forest structural complexity. The To help forecast how biodiversity
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
林业科学研究
林业科学研究 Environmental Science-Ecology
CiteScore
0.90
自引率
0.00%
发文量
4834
期刊介绍: Forestry Research is a comprehensive academic journal of forestry science organized by the Chinese Academy of Forestry. The main task is to reflect the latest research results, academic papers and research reports, scientific and technological developments and information on forestry science mainly organized by the Chinese Academy of Forestry, to promote academic exchanges at home and abroad, to carry out academic discussions, to flourish forestry science, and to better serve China's forestry construction. The main contents are: forest seeds, seedling afforestation, forest plants, forest genetic breeding, tree physiology and biochemistry, forest insects, resource insects, forest pathology, forest microorganisms, forest birds and animals, forest soil, forest ecology, forest management, forest manager, forestry remote sensing, forestry biotechnology and other new technologies, new methods, and to increase the development strategy of forestry, the trend of development of disciplines, technology policies and strategies, etc., and to increase the forestry development strategy, the trend of development of disciplines, technology policies and strategies. It is suitable for scientists and technicians of forestry and related disciplines, teachers and students of colleges and universities, leaders and managers, and grassroots forestry workers.
期刊最新文献
杜鹃红山茶与山茶‘媚丽’杂交后代花青苷变异特征 Screening of Tree Species For Fuelwood Production in The Mid-Altitudes of North Shewa, Ethiopia How Can Replanting Productive Conifers on Shallow Peat Soils Affect Carbon Sequestration Forest Atmosphere Exchange of Carbon Editorial Note on Path to Amazonian Forest Fires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1