FDA批准的类似药物作为SARS-CoV-2刺突和宿主受体蛋白抑制剂的计算机研究

Israa. M. Shamkh, D. Pratiwi, Hanaa S. Omar, N. E. Reyad
{"title":"FDA批准的类似药物作为SARS-CoV-2刺突和宿主受体蛋白抑制剂的计算机研究","authors":"Israa. M. Shamkh, D. Pratiwi, Hanaa S. Omar, N. E. Reyad","doi":"10.33084/jmd.v1i2.2213","DOIUrl":null,"url":null,"abstract":"The severe acute respiratory syndrome coronavirus 2, known as COVID-19, has been hideously increased worldwide. The disease began in Wuhan, China, around December 2019, then spread to most countries. Social distancing is the best procedure to prevent infection. Screening the available database containing millions of drug molecules or phytochemicals has become rapid and straightforward because of the computer-aided drug design (CADD) methods. In the present study, 300 phytochemicals and cellulose ether derivatives are screened through a docking study. Docking analysis showed that only four molecules (a-neohesperidin, quercetin 3-O-glucosylrutinoside, 14-ketostypodiol diacetate, and hydroxypropyl methylcellulose) were able to interact with the spike protein. However, two among them (quercetin 3-O-glucosylrutinoside and 14-ketostypodiol diacetate) could interact with the host cell receptor (ACE2) of SARS-CoV-2. The binding affinity of the four compounds is high. Still, according to Lipinski's rule of five, only 14-ketostypodiol diacetate was selected as a drug molecule due to its pharmacokinetic and ADMET properties. Screening for drug analogs to the 14-ketostypodiol diacetate detected five approved drugs. Docking analysis of these drugs with the target proteins showed that the five drugs interact with the host receptor protein, and three interact with viral spike protein. Accordingly, we suggest that molecular docking and drug analogs studies could support rapid drug development. In addition, future perspectives on therapeutic applications of 14-ketostypodiol diacetate are required for using it against SARS-CoV-2 infections.","PeriodicalId":16421,"journal":{"name":"Journal of Molecular Docking","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Silico Study for Similar FDA Approved Drugs as Inhibitors of SARS-CoV-2 Spike and the Host Receptor Proteins\",\"authors\":\"Israa. M. Shamkh, D. Pratiwi, Hanaa S. Omar, N. E. Reyad\",\"doi\":\"10.33084/jmd.v1i2.2213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The severe acute respiratory syndrome coronavirus 2, known as COVID-19, has been hideously increased worldwide. The disease began in Wuhan, China, around December 2019, then spread to most countries. Social distancing is the best procedure to prevent infection. Screening the available database containing millions of drug molecules or phytochemicals has become rapid and straightforward because of the computer-aided drug design (CADD) methods. In the present study, 300 phytochemicals and cellulose ether derivatives are screened through a docking study. Docking analysis showed that only four molecules (a-neohesperidin, quercetin 3-O-glucosylrutinoside, 14-ketostypodiol diacetate, and hydroxypropyl methylcellulose) were able to interact with the spike protein. However, two among them (quercetin 3-O-glucosylrutinoside and 14-ketostypodiol diacetate) could interact with the host cell receptor (ACE2) of SARS-CoV-2. The binding affinity of the four compounds is high. Still, according to Lipinski's rule of five, only 14-ketostypodiol diacetate was selected as a drug molecule due to its pharmacokinetic and ADMET properties. Screening for drug analogs to the 14-ketostypodiol diacetate detected five approved drugs. Docking analysis of these drugs with the target proteins showed that the five drugs interact with the host receptor protein, and three interact with viral spike protein. Accordingly, we suggest that molecular docking and drug analogs studies could support rapid drug development. In addition, future perspectives on therapeutic applications of 14-ketostypodiol diacetate are required for using it against SARS-CoV-2 infections.\",\"PeriodicalId\":16421,\"journal\":{\"name\":\"Journal of Molecular Docking\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Docking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33084/jmd.v1i2.2213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Docking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33084/jmd.v1i2.2213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

被称为COVID-19的严重急性呼吸系统综合征冠状病毒在全球范围内急剧增加。这种疾病于2019年12月左右在中国武汉开始,然后传播到大多数国家。保持社交距离是预防感染的最佳措施。由于计算机辅助药物设计(CADD)方法,筛选包含数百万药物分子或植物化学物质的可用数据库变得快速和直接。本研究通过对接研究筛选了300种植物化学物质和纤维素醚衍生物。对接分析表明,只有4个分子(a-新橙皮苷、槲皮素3- o -葡萄糖糖苷、14-酮苯二醇二乙酸酯和羟丙基甲基纤维素)能够与穗蛋白相互作用。其中槲皮素3- o -葡萄糖糖苷和14-酮戊二醇二醋酸酯可与SARS-CoV-2宿主细胞受体(ACE2)相互作用。这四种化合物的结合亲和力都很高。尽管如此,根据利平斯基的五法则,由于其药代动力学和ADMET特性,只有14-酮苯二醇二乙酸酯被选为药物分子。筛选14-酮苯二醇二乙酸酯的药物类似物检测到五种批准的药物。这些药物与靶蛋白对接分析表明,5种药物与宿主受体蛋白相互作用,3种药物与病毒刺突蛋白相互作用。因此,我们建议分子对接和药物类似物研究可以支持快速药物开发。此外,需要对14-酮苯二醇二乙酸酯的治疗应用进行未来的展望,以便将其用于治疗SARS-CoV-2感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In Silico Study for Similar FDA Approved Drugs as Inhibitors of SARS-CoV-2 Spike and the Host Receptor Proteins
The severe acute respiratory syndrome coronavirus 2, known as COVID-19, has been hideously increased worldwide. The disease began in Wuhan, China, around December 2019, then spread to most countries. Social distancing is the best procedure to prevent infection. Screening the available database containing millions of drug molecules or phytochemicals has become rapid and straightforward because of the computer-aided drug design (CADD) methods. In the present study, 300 phytochemicals and cellulose ether derivatives are screened through a docking study. Docking analysis showed that only four molecules (a-neohesperidin, quercetin 3-O-glucosylrutinoside, 14-ketostypodiol diacetate, and hydroxypropyl methylcellulose) were able to interact with the spike protein. However, two among them (quercetin 3-O-glucosylrutinoside and 14-ketostypodiol diacetate) could interact with the host cell receptor (ACE2) of SARS-CoV-2. The binding affinity of the four compounds is high. Still, according to Lipinski's rule of five, only 14-ketostypodiol diacetate was selected as a drug molecule due to its pharmacokinetic and ADMET properties. Screening for drug analogs to the 14-ketostypodiol diacetate detected five approved drugs. Docking analysis of these drugs with the target proteins showed that the five drugs interact with the host receptor protein, and three interact with viral spike protein. Accordingly, we suggest that molecular docking and drug analogs studies could support rapid drug development. In addition, future perspectives on therapeutic applications of 14-ketostypodiol diacetate are required for using it against SARS-CoV-2 infections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Docking and Dynamics Study of Phytochemicals as Potent Inhibitors against SARS-CoV-2 Main Protease Identification of Bioactive Molecules from Combretum micranthum as Potential Inhibitors of α-amylase through Computational Investigations De Novo Class of Momordicoside with Potent and Selective Tumor Cell Growth Inhibitory Activity as Pyruvate Kinase Muscle Isozyme 2 and Anti-apoptotic Myeloid Leukemia 1 Inhibitors Phytochemical Molecules Binding with the Proteins of Mycolic Acid Synthesis Pathway of Mycobacterium tuberculosis Alantolactone: A Potential Multitarget Drug candidate for Prevention of SARS-CoV-2 Cell Entry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1