{"title":"求解卷积积分方程的新计算方法:一维采样方法[在线优先]","authors":"Carlos Ivan Paez Rueda, Roberto Bustamante Miller","doi":"10.11144/JAVERIANA.IYU23-2.NCAS","DOIUrl":null,"url":null,"abstract":"Objective: This paper proposes a new methodology to solve one-dimensional cases of integral equations with difference kernels using Fourier analysis. Methodology: In this study, it was proven that any Fredholm equation of the first kind can be expressed as an extended convolutional problem; consequently, a new approach to solve that problem, using the nonideal instantaneous sampling theory and Fourier analysis, can be developed. Results and Discussion: The proposal was extensively evaluated and compared with the method of moments by considering two benchmarks. The first was a narrowband problem related to a second-order differential equation with specific boundaries. The second was a standard wideband problem related to wire antenna radiation in electrodynamics, known as the Pocklington equation. In both cases, we derived new interpretations and different approaches to solve the problems efficiently. Conclusions: The new proposal generalized the method of moments via new interpretations, strategies and design rules. We found that the techniques based on the method of moments are point-matching procedures independent of the weighting functions; the basis functions can be designed as generalized interpolation functions with more information provided by the original domain; the weighting functions literally represent a sampled linear filter; the unknown continuous function can be approximated without using the classical variational approach; and several new strategies based on the Fourier transform can be used to reduce the computational cost","PeriodicalId":39036,"journal":{"name":"Ingenieria y Universidad","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Novel computational approach to solve convolutional integral equations: method of sampling for one dimension [Online First]\",\"authors\":\"Carlos Ivan Paez Rueda, Roberto Bustamante Miller\",\"doi\":\"10.11144/JAVERIANA.IYU23-2.NCAS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: This paper proposes a new methodology to solve one-dimensional cases of integral equations with difference kernels using Fourier analysis. Methodology: In this study, it was proven that any Fredholm equation of the first kind can be expressed as an extended convolutional problem; consequently, a new approach to solve that problem, using the nonideal instantaneous sampling theory and Fourier analysis, can be developed. Results and Discussion: The proposal was extensively evaluated and compared with the method of moments by considering two benchmarks. The first was a narrowband problem related to a second-order differential equation with specific boundaries. The second was a standard wideband problem related to wire antenna radiation in electrodynamics, known as the Pocklington equation. In both cases, we derived new interpretations and different approaches to solve the problems efficiently. Conclusions: The new proposal generalized the method of moments via new interpretations, strategies and design rules. We found that the techniques based on the method of moments are point-matching procedures independent of the weighting functions; the basis functions can be designed as generalized interpolation functions with more information provided by the original domain; the weighting functions literally represent a sampled linear filter; the unknown continuous function can be approximated without using the classical variational approach; and several new strategies based on the Fourier transform can be used to reduce the computational cost\",\"PeriodicalId\":39036,\"journal\":{\"name\":\"Ingenieria y Universidad\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ingenieria y Universidad\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11144/JAVERIANA.IYU23-2.NCAS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ingenieria y Universidad","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11144/JAVERIANA.IYU23-2.NCAS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Novel computational approach to solve convolutional integral equations: method of sampling for one dimension [Online First]
Objective: This paper proposes a new methodology to solve one-dimensional cases of integral equations with difference kernels using Fourier analysis. Methodology: In this study, it was proven that any Fredholm equation of the first kind can be expressed as an extended convolutional problem; consequently, a new approach to solve that problem, using the nonideal instantaneous sampling theory and Fourier analysis, can be developed. Results and Discussion: The proposal was extensively evaluated and compared with the method of moments by considering two benchmarks. The first was a narrowband problem related to a second-order differential equation with specific boundaries. The second was a standard wideband problem related to wire antenna radiation in electrodynamics, known as the Pocklington equation. In both cases, we derived new interpretations and different approaches to solve the problems efficiently. Conclusions: The new proposal generalized the method of moments via new interpretations, strategies and design rules. We found that the techniques based on the method of moments are point-matching procedures independent of the weighting functions; the basis functions can be designed as generalized interpolation functions with more information provided by the original domain; the weighting functions literally represent a sampled linear filter; the unknown continuous function can be approximated without using the classical variational approach; and several new strategies based on the Fourier transform can be used to reduce the computational cost
期刊介绍:
Our journal''s main objective is to serve as a medium for the diffusion and divulgation of the articles and investigations in the engineering scientific and investigative fields. All the documents presented as result of an investigation will be received, as well as any review about engineering, this includes essays that might contribute to the academic and scientific discussion of any of the branches of engineering. Any contribution to the subject related to engineering development, ethics, values, or its relations with policies, culture, society and environmental fields are welcome. The publication frequency is semestral.