{"title":"基于模式匹配的时变图形结构演化平滑动画","authors":"Yunzhe Wang, G. Baciu, Chenhui Li","doi":"10.1145/3139295.3139302","DOIUrl":null,"url":null,"abstract":"Drawing a large graph into the limited display space often raises visual clutter and overlapping problems. The complex structure hinders the exploration of significant patterns of connections. For time-varying graphs, it is difficult to reveal the evolution of structures. In this paper, we group nodes and links into partitions, where objects within a partition are more closely related. Besides, partitions maintain stable across time steps. The complex structure of a partition is simplified by mapping to a pattern and the evolution is exposed by comparing patterns of two consecutive time steps. We created various visual designs to present different scenarios of changes. In order to achieve a smooth animation of time-varying graphs, we extract the graph layout at each time step from a super-layout which is based on the super-graph and super-community. The effectiveness of our approach is verified with two datasets, one is a synthetic dataset, and the other is the DBLP dataset.","PeriodicalId":92446,"journal":{"name":"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Smooth animation of structure evolution in time-varying graphs with pattern matching\",\"authors\":\"Yunzhe Wang, G. Baciu, Chenhui Li\",\"doi\":\"10.1145/3139295.3139302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drawing a large graph into the limited display space often raises visual clutter and overlapping problems. The complex structure hinders the exploration of significant patterns of connections. For time-varying graphs, it is difficult to reveal the evolution of structures. In this paper, we group nodes and links into partitions, where objects within a partition are more closely related. Besides, partitions maintain stable across time steps. The complex structure of a partition is simplified by mapping to a pattern and the evolution is exposed by comparing patterns of two consecutive time steps. We created various visual designs to present different scenarios of changes. In order to achieve a smooth animation of time-varying graphs, we extract the graph layout at each time step from a super-layout which is based on the super-graph and super-community. The effectiveness of our approach is verified with two datasets, one is a synthetic dataset, and the other is the DBLP dataset.\",\"PeriodicalId\":92446,\"journal\":{\"name\":\"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3139295.3139302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2017 Symposium on Visualization. SIGGRAPH Asia Symposium on Visualization (2017 : Bangkok, Thailand)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3139295.3139302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Smooth animation of structure evolution in time-varying graphs with pattern matching
Drawing a large graph into the limited display space often raises visual clutter and overlapping problems. The complex structure hinders the exploration of significant patterns of connections. For time-varying graphs, it is difficult to reveal the evolution of structures. In this paper, we group nodes and links into partitions, where objects within a partition are more closely related. Besides, partitions maintain stable across time steps. The complex structure of a partition is simplified by mapping to a pattern and the evolution is exposed by comparing patterns of two consecutive time steps. We created various visual designs to present different scenarios of changes. In order to achieve a smooth animation of time-varying graphs, we extract the graph layout at each time step from a super-layout which is based on the super-graph and super-community. The effectiveness of our approach is verified with two datasets, one is a synthetic dataset, and the other is the DBLP dataset.