D Nhu, M Janmohamed, L Shakhatreh, O Gonen, P Perucca, A Gilligan, P Kwan, T J O'Brien, C W Tan, L Kuhlmann
{"title":"基于可扩展时间序列分类方法的头皮脑电图间期癫痫样放电自动检测。","authors":"D Nhu, M Janmohamed, L Shakhatreh, O Gonen, P Perucca, A Gilligan, P Kwan, T J O'Brien, C W Tan, L Kuhlmann","doi":"10.1142/S0129065723500016","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning for automated interictal epileptiform discharge (IED) detection has been topical with many published papers in recent years. All existing works viewed EEG signals as time-series and developed specific models for IED classification; however, general time-series classification (TSC) methods were not considered. Moreover, none of these methods were evaluated on any public datasets, making direct comparisons challenging. This paper explored two state-of-the-art convolutional-based TSC algorithms, InceptionTime and Minirocket, on IED detection. We fine-tuned and cross-evaluated them on a public (Temple University Events - TUEV) and two private datasets and provided ready metrics for benchmarking future work. We observed that the optimal parameters correlated with the clinical duration of an IED and achieved the best area under precision-recall curve (AUPRC) of 0.98 and F1 of 0.80 on the private datasets, respectively. The AUPRC and F1 on the TUEV dataset were 0.99 and 0.97, respectively. While algorithms trained on the private sets maintained their performance when tested on the TUEV data, those trained on TUEV could not generalize well to the private data. These results emerge from differences in the class distributions across datasets and indicate a need for public datasets with a better diversity of IED waveforms, background activities and artifacts to facilitate standardization and benchmarking of algorithms.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Interictal Epileptiform Discharge Detection from Scalp EEG Using Scalable Time-series Classification Approaches.\",\"authors\":\"D Nhu, M Janmohamed, L Shakhatreh, O Gonen, P Perucca, A Gilligan, P Kwan, T J O'Brien, C W Tan, L Kuhlmann\",\"doi\":\"10.1142/S0129065723500016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep learning for automated interictal epileptiform discharge (IED) detection has been topical with many published papers in recent years. All existing works viewed EEG signals as time-series and developed specific models for IED classification; however, general time-series classification (TSC) methods were not considered. Moreover, none of these methods were evaluated on any public datasets, making direct comparisons challenging. This paper explored two state-of-the-art convolutional-based TSC algorithms, InceptionTime and Minirocket, on IED detection. We fine-tuned and cross-evaluated them on a public (Temple University Events - TUEV) and two private datasets and provided ready metrics for benchmarking future work. We observed that the optimal parameters correlated with the clinical duration of an IED and achieved the best area under precision-recall curve (AUPRC) of 0.98 and F1 of 0.80 on the private datasets, respectively. The AUPRC and F1 on the TUEV dataset were 0.99 and 0.97, respectively. While algorithms trained on the private sets maintained their performance when tested on the TUEV data, those trained on TUEV could not generalize well to the private data. These results emerge from differences in the class distributions across datasets and indicate a need for public datasets with a better diversity of IED waveforms, background activities and artifacts to facilitate standardization and benchmarking of algorithms.</p>\",\"PeriodicalId\":50305,\"journal\":{\"name\":\"International Journal of Neural Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129065723500016\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065723500016","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Automated Interictal Epileptiform Discharge Detection from Scalp EEG Using Scalable Time-series Classification Approaches.
Deep learning for automated interictal epileptiform discharge (IED) detection has been topical with many published papers in recent years. All existing works viewed EEG signals as time-series and developed specific models for IED classification; however, general time-series classification (TSC) methods were not considered. Moreover, none of these methods were evaluated on any public datasets, making direct comparisons challenging. This paper explored two state-of-the-art convolutional-based TSC algorithms, InceptionTime and Minirocket, on IED detection. We fine-tuned and cross-evaluated them on a public (Temple University Events - TUEV) and two private datasets and provided ready metrics for benchmarking future work. We observed that the optimal parameters correlated with the clinical duration of an IED and achieved the best area under precision-recall curve (AUPRC) of 0.98 and F1 of 0.80 on the private datasets, respectively. The AUPRC and F1 on the TUEV dataset were 0.99 and 0.97, respectively. While algorithms trained on the private sets maintained their performance when tested on the TUEV data, those trained on TUEV could not generalize well to the private data. These results emerge from differences in the class distributions across datasets and indicate a need for public datasets with a better diversity of IED waveforms, background activities and artifacts to facilitate standardization and benchmarking of algorithms.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.