{"title":"地铁系统随机时刻表优化模型","authors":"Xiang Li, Xingxing Yang","doi":"10.1142/S0218488513400011","DOIUrl":null,"url":null,"abstract":"With fixed running times at sections, cooperative scheduling (CS) approach optimizes the dwell times and the headway time to coordinate the accelerating and braking processes for trains, such that the recovery energy generated from the braking trains can be used by the accelerating trains. In practice, trains always have stochastic departure delays at busy stations. For reducing the divergence from the given timetable, the operation company generally adjusts the running times at the following sections. Focusing on the randomness on delay times and running times, this paper proposes a stochastic cooperative scheduling (SCS) approach. Firstly, we estimate the conversion and transmission losses of recovery energy, and then formulate a stochastic expected value model to maximize the utilization of the recovery energy. Furthermore, we design a binary-coded genetic algorithm to solve the optimal timetable. Finally, we conduct experimental studies based on the operation data from Beijing Yizhuang subway line. The results show that the SCS approach can save energy by 15.13% compared with the current timetable, and 8.81% compared with the CS approach.","PeriodicalId":50283,"journal":{"name":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","volume":"95 1","pages":"1-15"},"PeriodicalIF":1.0000,"publicationDate":"2013-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"A STOCHASTIC TIMETABLE OPTIMIZATION MODEL IN SUBWAY SYSTEMS\",\"authors\":\"Xiang Li, Xingxing Yang\",\"doi\":\"10.1142/S0218488513400011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With fixed running times at sections, cooperative scheduling (CS) approach optimizes the dwell times and the headway time to coordinate the accelerating and braking processes for trains, such that the recovery energy generated from the braking trains can be used by the accelerating trains. In practice, trains always have stochastic departure delays at busy stations. For reducing the divergence from the given timetable, the operation company generally adjusts the running times at the following sections. Focusing on the randomness on delay times and running times, this paper proposes a stochastic cooperative scheduling (SCS) approach. Firstly, we estimate the conversion and transmission losses of recovery energy, and then formulate a stochastic expected value model to maximize the utilization of the recovery energy. Furthermore, we design a binary-coded genetic algorithm to solve the optimal timetable. Finally, we conduct experimental studies based on the operation data from Beijing Yizhuang subway line. The results show that the SCS approach can save energy by 15.13% compared with the current timetable, and 8.81% compared with the CS approach.\",\"PeriodicalId\":50283,\"journal\":{\"name\":\"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems\",\"volume\":\"95 1\",\"pages\":\"1-15\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2013-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218488513400011\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0218488513400011","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A STOCHASTIC TIMETABLE OPTIMIZATION MODEL IN SUBWAY SYSTEMS
With fixed running times at sections, cooperative scheduling (CS) approach optimizes the dwell times and the headway time to coordinate the accelerating and braking processes for trains, such that the recovery energy generated from the braking trains can be used by the accelerating trains. In practice, trains always have stochastic departure delays at busy stations. For reducing the divergence from the given timetable, the operation company generally adjusts the running times at the following sections. Focusing on the randomness on delay times and running times, this paper proposes a stochastic cooperative scheduling (SCS) approach. Firstly, we estimate the conversion and transmission losses of recovery energy, and then formulate a stochastic expected value model to maximize the utilization of the recovery energy. Furthermore, we design a binary-coded genetic algorithm to solve the optimal timetable. Finally, we conduct experimental studies based on the operation data from Beijing Yizhuang subway line. The results show that the SCS approach can save energy by 15.13% compared with the current timetable, and 8.81% compared with the CS approach.
期刊介绍:
The International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems is a forum for research on various methodologies for the management of imprecise, vague, uncertain or incomplete information. The aim of the journal is to promote theoretical or methodological works dealing with all kinds of methods to represent and manipulate imperfectly described pieces of knowledge, excluding results on pure mathematics or simple applications of existing theoretical results. It is published bimonthly, with worldwide distribution to researchers, engineers, decision-makers, and educators.