Mithra Sudha Mohan, Aswani Sukumaran Sreedevi, Aparna Nandakumaran Sakunthala, Puthenpura T Boban, Perumana R Sudhakaran, Saja Kamalamma
{"title":"间歇性冷暴露上调小鼠心脏线粒体生物发生和功能的调节因子。","authors":"Mithra Sudha Mohan, Aswani Sukumaran Sreedevi, Aparna Nandakumaran Sakunthala, Puthenpura T Boban, Perumana R Sudhakaran, Saja Kamalamma","doi":"10.1556/2060.2023.00128","DOIUrl":null,"url":null,"abstract":"<p><p>Hypothermic conditions enhance the incidence of cardiovascular diseases due to increased blood pressure. Cold-induced adaptive thermogenesis increased mitochondrial biogenesis and function in skeletal muscles and adipocytes. Here, we studied the effect of intermittent cold exposure on the regulators of cardiac mitochondrial biogenesis, function, and its regulation by SIRT-3. Intermittent cold exposed mice hearts showed normal histopathology with increased mitochondrial antioxidant and metabolic function, as evidenced by an increase in the activity and expression of MnSOD and SDH. A substantial increase in mitochondrial DNA copy number and increase in the expression of PGC-1α and its downstream targets NRF-1 and Tfam indicated the possibility of enhanced cardiac mitochondrial biogenesis and function on intermittent cold exposure. Increased mitochondrial SIRT-3 level and decreased total protein lysine acetylation indicate increased sirtuin activity in cold exposed mice hearts. Ex vivo cold mimic using norepinephrine showed a significant increase in PGC-1α, NRF-1, and Tfam levels. AGK-7, a SIRT-3 inhibitor, reversed the norepinephrine-induced upregulation of PGC-1α and NRF-1, indicating the role of SIRT-3 on the production of PGC-1α and NRF-1. Inhibition of PKA with KT5720 in norepinephrine treated cardiac tissue slices indicates the role of PKA in regulating the production of PGC-1α and NRF-1. In conclusion, intermittent cold exposure upregulated the regulators of mitochondrial biogenesis and function through PKA and SIRT-3 mediated pathway. Our results emphasize the role of intermittent cold-induced adaptive thermogenesis in overcoming chronic cold-induced cardiac damage.</p>","PeriodicalId":20058,"journal":{"name":"Physiology international","volume":"110 1","pages":"1-18"},"PeriodicalIF":2.2000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intermittent cold exposure upregulates regulators of cardiac mitochondrial biogenesis and function in mice.\",\"authors\":\"Mithra Sudha Mohan, Aswani Sukumaran Sreedevi, Aparna Nandakumaran Sakunthala, Puthenpura T Boban, Perumana R Sudhakaran, Saja Kamalamma\",\"doi\":\"10.1556/2060.2023.00128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypothermic conditions enhance the incidence of cardiovascular diseases due to increased blood pressure. Cold-induced adaptive thermogenesis increased mitochondrial biogenesis and function in skeletal muscles and adipocytes. Here, we studied the effect of intermittent cold exposure on the regulators of cardiac mitochondrial biogenesis, function, and its regulation by SIRT-3. Intermittent cold exposed mice hearts showed normal histopathology with increased mitochondrial antioxidant and metabolic function, as evidenced by an increase in the activity and expression of MnSOD and SDH. A substantial increase in mitochondrial DNA copy number and increase in the expression of PGC-1α and its downstream targets NRF-1 and Tfam indicated the possibility of enhanced cardiac mitochondrial biogenesis and function on intermittent cold exposure. Increased mitochondrial SIRT-3 level and decreased total protein lysine acetylation indicate increased sirtuin activity in cold exposed mice hearts. Ex vivo cold mimic using norepinephrine showed a significant increase in PGC-1α, NRF-1, and Tfam levels. AGK-7, a SIRT-3 inhibitor, reversed the norepinephrine-induced upregulation of PGC-1α and NRF-1, indicating the role of SIRT-3 on the production of PGC-1α and NRF-1. Inhibition of PKA with KT5720 in norepinephrine treated cardiac tissue slices indicates the role of PKA in regulating the production of PGC-1α and NRF-1. In conclusion, intermittent cold exposure upregulated the regulators of mitochondrial biogenesis and function through PKA and SIRT-3 mediated pathway. Our results emphasize the role of intermittent cold-induced adaptive thermogenesis in overcoming chronic cold-induced cardiac damage.</p>\",\"PeriodicalId\":20058,\"journal\":{\"name\":\"Physiology international\",\"volume\":\"110 1\",\"pages\":\"1-18\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology international\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1556/2060.2023.00128\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology international","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1556/2060.2023.00128","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Intermittent cold exposure upregulates regulators of cardiac mitochondrial biogenesis and function in mice.
Hypothermic conditions enhance the incidence of cardiovascular diseases due to increased blood pressure. Cold-induced adaptive thermogenesis increased mitochondrial biogenesis and function in skeletal muscles and adipocytes. Here, we studied the effect of intermittent cold exposure on the regulators of cardiac mitochondrial biogenesis, function, and its regulation by SIRT-3. Intermittent cold exposed mice hearts showed normal histopathology with increased mitochondrial antioxidant and metabolic function, as evidenced by an increase in the activity and expression of MnSOD and SDH. A substantial increase in mitochondrial DNA copy number and increase in the expression of PGC-1α and its downstream targets NRF-1 and Tfam indicated the possibility of enhanced cardiac mitochondrial biogenesis and function on intermittent cold exposure. Increased mitochondrial SIRT-3 level and decreased total protein lysine acetylation indicate increased sirtuin activity in cold exposed mice hearts. Ex vivo cold mimic using norepinephrine showed a significant increase in PGC-1α, NRF-1, and Tfam levels. AGK-7, a SIRT-3 inhibitor, reversed the norepinephrine-induced upregulation of PGC-1α and NRF-1, indicating the role of SIRT-3 on the production of PGC-1α and NRF-1. Inhibition of PKA with KT5720 in norepinephrine treated cardiac tissue slices indicates the role of PKA in regulating the production of PGC-1α and NRF-1. In conclusion, intermittent cold exposure upregulated the regulators of mitochondrial biogenesis and function through PKA and SIRT-3 mediated pathway. Our results emphasize the role of intermittent cold-induced adaptive thermogenesis in overcoming chronic cold-induced cardiac damage.
期刊介绍:
The journal provides a forum for important new research papers written by eminent scientists on experimental medical sciences. Papers reporting on both original work and review articles in the fields of basic and clinical physiology, pathophysiology (from the subcellular organization level up to the oranizmic one), as well as related disciplines, including history of physiological sciences, are accepted.