爆破荷载作用下砌体填充墙钢筋混凝土框架连续倒塌数值模拟研究

IF 0.8 Q3 ENGINEERING, MULTIDISCIPLINARY Modelling and Simulation in Engineering Pub Date : 2022-11-11 DOI:10.1155/2022/1781415
Qinghua Xu, Xuezhi Zhen, Yu Zhang, Mengjun Han, Wenkang Zhang
{"title":"爆破荷载作用下砌体填充墙钢筋混凝土框架连续倒塌数值模拟研究","authors":"Qinghua Xu, Xuezhi Zhen, Yu Zhang, Mengjun Han, Wenkang Zhang","doi":"10.1155/2022/1781415","DOIUrl":null,"url":null,"abstract":"The influence of masonry infill walls on the progressive collapse performance of reinforced concrete (RC) frame structures was investigated in this paper, using a nonlinear dynamic analysis approach. Based on ANSYS/LS-DYNA finite element software, two finite element models of RC frame structures with and without masonry infilled walls were established. Then, the collapse modes of the two RC frame structure models were analyzed for different scaled distance blast loads, different locations of column damage, and different span numbers. The results show that with the increase of explosive amount, the collapse degree of the structure is more serious in the same time. Under the condition of destroying the outermost central column, the degree of progressive collapse of the RC frame model with infilled walls in the same time is lower than that of the RC frame model without infilled walls. The RC frame model with infilled walls is more resistant to collapse when the outermost side columns are damaged. With the increase of span number, the structure is more likely to be damaged and collapsed.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical Simulation Study of Progressive Collapse of Reinforced Concrete Frames with Masonry Infill Walls under Blast Loading\",\"authors\":\"Qinghua Xu, Xuezhi Zhen, Yu Zhang, Mengjun Han, Wenkang Zhang\",\"doi\":\"10.1155/2022/1781415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The influence of masonry infill walls on the progressive collapse performance of reinforced concrete (RC) frame structures was investigated in this paper, using a nonlinear dynamic analysis approach. Based on ANSYS/LS-DYNA finite element software, two finite element models of RC frame structures with and without masonry infilled walls were established. Then, the collapse modes of the two RC frame structure models were analyzed for different scaled distance blast loads, different locations of column damage, and different span numbers. The results show that with the increase of explosive amount, the collapse degree of the structure is more serious in the same time. Under the condition of destroying the outermost central column, the degree of progressive collapse of the RC frame model with infilled walls in the same time is lower than that of the RC frame model without infilled walls. The RC frame model with infilled walls is more resistant to collapse when the outermost side columns are damaged. With the increase of span number, the structure is more likely to be damaged and collapsed.\",\"PeriodicalId\":45541,\"journal\":{\"name\":\"Modelling and Simulation in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/1781415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/1781415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

采用非线性动力分析方法,研究了砌体填充墙对钢筋混凝土框架结构连续倒塌性能的影响。基于ANSYS/LS-DYNA有限元软件,建立了有无砌体填充墙的RC框架结构有限元模型。然后,分析了两种RC框架结构模型在不同比例距离爆炸荷载、不同柱损伤位置和不同跨数下的倒塌模式。结果表明,随着爆炸量的增加,结构的倒塌程度也随之加重。在最外侧中心柱被破坏的情况下,有填充墙的RC框架模型在同一时间内的渐进倒塌程度低于没有填充墙的RC框架模型。填充墙混凝土框架模型在最外侧柱被破坏时具有更强的抗倒塌能力。随着跨数的增加,结构破坏和倒塌的可能性增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Simulation Study of Progressive Collapse of Reinforced Concrete Frames with Masonry Infill Walls under Blast Loading
The influence of masonry infill walls on the progressive collapse performance of reinforced concrete (RC) frame structures was investigated in this paper, using a nonlinear dynamic analysis approach. Based on ANSYS/LS-DYNA finite element software, two finite element models of RC frame structures with and without masonry infilled walls were established. Then, the collapse modes of the two RC frame structure models were analyzed for different scaled distance blast loads, different locations of column damage, and different span numbers. The results show that with the increase of explosive amount, the collapse degree of the structure is more serious in the same time. Under the condition of destroying the outermost central column, the degree of progressive collapse of the RC frame model with infilled walls in the same time is lower than that of the RC frame model without infilled walls. The RC frame model with infilled walls is more resistant to collapse when the outermost side columns are damaged. With the increase of span number, the structure is more likely to be damaged and collapsed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modelling and Simulation in Engineering
Modelling and Simulation in Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
2.70
自引率
3.10%
发文量
42
审稿时长
18 weeks
期刊介绍: Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.
期刊最新文献
Finite Element Modelling and Simulation of Tunnel Gates of Dam Structures in ABAQUS Using Reduced-Integrated 8-Node Hexahedral Solid-Shell Element Modeling and Simulation of the Effect of Airbag Thickness on the Performance of Extended Handle Pneumatic Floor Jack Assessment of Fractional and Integer Order Models of Induction Motor Using MATLAB/Simulink State of the Art of Modelling and Design Approaches for Ejectors in Proton Exchange Membrane Fuel Cell Predictive Modeling of Environmental Impact on Drone Datalink Communication System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1