依赖感知空间众包中的任务分配

Wangze Ni, Peng Cheng, Lei Chen, Xuemin Lin
{"title":"依赖感知空间众包中的任务分配","authors":"Wangze Ni, Peng Cheng, Lei Chen, Xuemin Lin","doi":"10.1109/ICDE48307.2020.00090","DOIUrl":null,"url":null,"abstract":"Ubiquitous smart devices and high-quality wireless networks enable people to participate in spatial crowdsourcing tasks easily, which require workers to physically move to specific locations to conduct their assigned tasks. Spatial crowdsourcing has attracted much attention from both academia and industry. In this paper, we consider a spatial crowdsourcing scenario, where the tasks may have some dependencies among them. Specifically, one task can only be dispatched when its dependent tasks have already been assigned. In fact, task dependencies are quite common in many real-life applications, such as house repairing and holding sports games. We formally define the dependency-aware spatial crowdsourcing (DA-SC), which focuses on finding an optimal worker-and-task assignment under the constraints of dependencies, skills of workers, moving distances and deadlines to maximize the successfully assigned tasks. We prove that the DA-SC problem is NP-hard and thus intractable. Therefore, we propose two approximation algorithms, including a greedy approach and a game-theoretic approach, which can guarantee the approximate bounds of the results in each batch process. Through extensive experiments on both real and synthetic data sets, we demonstrate the efficiency and effectiveness of our DA-SC approaches.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"61 1","pages":"985-996"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Task Allocation in Dependency-aware Spatial Crowdsourcing\",\"authors\":\"Wangze Ni, Peng Cheng, Lei Chen, Xuemin Lin\",\"doi\":\"10.1109/ICDE48307.2020.00090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ubiquitous smart devices and high-quality wireless networks enable people to participate in spatial crowdsourcing tasks easily, which require workers to physically move to specific locations to conduct their assigned tasks. Spatial crowdsourcing has attracted much attention from both academia and industry. In this paper, we consider a spatial crowdsourcing scenario, where the tasks may have some dependencies among them. Specifically, one task can only be dispatched when its dependent tasks have already been assigned. In fact, task dependencies are quite common in many real-life applications, such as house repairing and holding sports games. We formally define the dependency-aware spatial crowdsourcing (DA-SC), which focuses on finding an optimal worker-and-task assignment under the constraints of dependencies, skills of workers, moving distances and deadlines to maximize the successfully assigned tasks. We prove that the DA-SC problem is NP-hard and thus intractable. Therefore, we propose two approximation algorithms, including a greedy approach and a game-theoretic approach, which can guarantee the approximate bounds of the results in each batch process. Through extensive experiments on both real and synthetic data sets, we demonstrate the efficiency and effectiveness of our DA-SC approaches.\",\"PeriodicalId\":6709,\"journal\":{\"name\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"volume\":\"61 1\",\"pages\":\"985-996\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE48307.2020.00090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

无处不在的智能设备和高质量的无线网络使人们能够轻松地参与空间众包任务,这需要工人实际移动到特定的位置来执行分配的任务。空间众包已经引起了学术界和工业界的广泛关注。在本文中,我们考虑一个空间众包场景,其中任务之间可能存在一些依赖关系。具体来说,一个任务只能在其相关任务已经被分配的情况下才可以被分派。事实上,任务依赖关系在许多现实生活中的应用程序中非常常见,例如房屋维修和举办体育比赛。我们正式定义了依赖感知空间众包(DA-SC),其重点是在依赖关系、工人技能、移动距离和截止日期的约束下找到最佳的工人和任务分配,以最大限度地成功分配任务。我们证明了DA-SC问题是np困难的,因此是难以处理的。因此,我们提出了两种近似算法,即贪心算法和博弈论算法,可以保证每个批处理结果的近似界。通过对真实和合成数据集的大量实验,我们证明了我们的DA-SC方法的效率和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Task Allocation in Dependency-aware Spatial Crowdsourcing
Ubiquitous smart devices and high-quality wireless networks enable people to participate in spatial crowdsourcing tasks easily, which require workers to physically move to specific locations to conduct their assigned tasks. Spatial crowdsourcing has attracted much attention from both academia and industry. In this paper, we consider a spatial crowdsourcing scenario, where the tasks may have some dependencies among them. Specifically, one task can only be dispatched when its dependent tasks have already been assigned. In fact, task dependencies are quite common in many real-life applications, such as house repairing and holding sports games. We formally define the dependency-aware spatial crowdsourcing (DA-SC), which focuses on finding an optimal worker-and-task assignment under the constraints of dependencies, skills of workers, moving distances and deadlines to maximize the successfully assigned tasks. We prove that the DA-SC problem is NP-hard and thus intractable. Therefore, we propose two approximation algorithms, including a greedy approach and a game-theoretic approach, which can guarantee the approximate bounds of the results in each batch process. Through extensive experiments on both real and synthetic data sets, we demonstrate the efficiency and effectiveness of our DA-SC approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Turbocharging Geospatial Visualization Dashboards via a Materialized Sampling Cube Approach Mobility-Aware Dynamic Taxi Ridesharing Multiscale Frequent Co-movement Pattern Mining Automatic Calibration of Road Intersection Topology using Trajectories Turbine: Facebook’s Service Management Platform for Stream Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1