北京插值颗粒物(PM2.5)时空可视化

Q3 Social Sciences GI_Forum Pub Date : 2015-01-01 DOI:10.1553/GISCIENCE2015S464
A. Keler, J. Krisp
{"title":"北京插值颗粒物(PM2.5)时空可视化","authors":"A. Keler, J. Krisp","doi":"10.1553/GISCIENCE2015S464","DOIUrl":null,"url":null,"abstract":"People in growing urban areas are more and more influenced by emissions coming from numerous vehicles and factories. In this paper we inspect the concentration of particulate matter (PM2.5) visually over time. This information stems from a data set of air quality measurements from 36 static sensors in Beijing over one year (from 8.02.2013 till 8.02.2014). One possibility for creating an overview for 36 positions with varying PM2.5 measurements in time is the use of interpolation techniques. In our approach, we generate surfaces of PM2.5 concentration using inverse distance weighting (IDW). The resulting surfaces represent interpolated PM2.5 values, based on averaged PM2.5 information (e.g. average of one day). We create simple interactive visualizations using points as surface representations. Each surface point within the 3D visual analysis display exhibits its PM2.5 value by differing coloration and z-value (height component). The interactivity consists of using selection circles for stacked 3D displays of interpolated PM2.5 surfaces for different times (time series). The aim of this visual information analysis is the possible detection of periodical hotspots of high PM2.5 concentrations, which might be useful for people with respiratory diseases. For the detection of dynamic PM2.5 hotspot variations, we introduce thresholds for querying only the highest PM2.5 values of the surfaces. Afterwards, these points are aggregated into convex hulls (polygons), with the idea of comparing the size and shape of the PM2.5 hotspots in each created surface. The change of position and size of these polygons over time may be an indicator for air quality changes within an urban environment. Considering the above, this may be a starting point for the conception of a personalized routing solution for pedestrians or vehicle drivers with respiratory diseases, who want to avoid these hotspots of high PM2.5 concentrations.","PeriodicalId":29645,"journal":{"name":"GI_Forum","volume":"17 1","pages":"464-474"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Spatio-temporal Visualization of Interpolated Particulate Matter (PM2.5) in Beijing\",\"authors\":\"A. Keler, J. Krisp\",\"doi\":\"10.1553/GISCIENCE2015S464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"People in growing urban areas are more and more influenced by emissions coming from numerous vehicles and factories. In this paper we inspect the concentration of particulate matter (PM2.5) visually over time. This information stems from a data set of air quality measurements from 36 static sensors in Beijing over one year (from 8.02.2013 till 8.02.2014). One possibility for creating an overview for 36 positions with varying PM2.5 measurements in time is the use of interpolation techniques. In our approach, we generate surfaces of PM2.5 concentration using inverse distance weighting (IDW). The resulting surfaces represent interpolated PM2.5 values, based on averaged PM2.5 information (e.g. average of one day). We create simple interactive visualizations using points as surface representations. Each surface point within the 3D visual analysis display exhibits its PM2.5 value by differing coloration and z-value (height component). The interactivity consists of using selection circles for stacked 3D displays of interpolated PM2.5 surfaces for different times (time series). The aim of this visual information analysis is the possible detection of periodical hotspots of high PM2.5 concentrations, which might be useful for people with respiratory diseases. For the detection of dynamic PM2.5 hotspot variations, we introduce thresholds for querying only the highest PM2.5 values of the surfaces. Afterwards, these points are aggregated into convex hulls (polygons), with the idea of comparing the size and shape of the PM2.5 hotspots in each created surface. The change of position and size of these polygons over time may be an indicator for air quality changes within an urban environment. Considering the above, this may be a starting point for the conception of a personalized routing solution for pedestrians or vehicle drivers with respiratory diseases, who want to avoid these hotspots of high PM2.5 concentrations.\",\"PeriodicalId\":29645,\"journal\":{\"name\":\"GI_Forum\",\"volume\":\"17 1\",\"pages\":\"464-474\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GI_Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/GISCIENCE2015S464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GI_Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/GISCIENCE2015S464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 6

摘要

生活在不断发展的城市地区的人们越来越多地受到大量车辆和工厂排放的废气的影响。在本文中,我们通过视觉检查颗粒物质(PM2.5)的浓度随时间的变化。这些信息来自北京36个静态传感器在一年内(从2013年2月8日到2014年2月8日)的空气质量测量数据集。有一种可能是使用插值技术来创建36个位置的概况,这些位置的PM2.5测量值随时间变化。在我们的方法中,我们使用逆距离加权(IDW)生成PM2.5浓度曲面。生成的曲面表示基于PM2.5平均信息(例如一天的平均值)的插值PM2.5值。我们使用点作为表面表示来创建简单的交互式可视化。3D可视化分析显示中的每个表面点通过不同的颜色和z值(高度分量)显示其PM2.5值。交互性包括使用选择圈堆叠3D显示不同时间(时间序列)的插值PM2.5表面。这种视觉信息分析的目的是可能检测到高PM2.5浓度的周期性热点,这可能对呼吸系统疾病患者有用。为了检测PM2.5的动态热点变化,我们引入了仅查询最高PM2.5值的阈值。然后,将这些点聚集成凸壳(多边形),以比较每个创建表面上PM2.5热点的大小和形状。这些多边形的位置和大小随时间的变化可能是城市环境中空气质量变化的一个指标。综上所述,对于想要避开这些PM2.5浓度高的热点地区的患有呼吸道疾病的行人或车辆驾驶员来说,这可能是个性化路线解决方案概念的一个起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatio-temporal Visualization of Interpolated Particulate Matter (PM2.5) in Beijing
People in growing urban areas are more and more influenced by emissions coming from numerous vehicles and factories. In this paper we inspect the concentration of particulate matter (PM2.5) visually over time. This information stems from a data set of air quality measurements from 36 static sensors in Beijing over one year (from 8.02.2013 till 8.02.2014). One possibility for creating an overview for 36 positions with varying PM2.5 measurements in time is the use of interpolation techniques. In our approach, we generate surfaces of PM2.5 concentration using inverse distance weighting (IDW). The resulting surfaces represent interpolated PM2.5 values, based on averaged PM2.5 information (e.g. average of one day). We create simple interactive visualizations using points as surface representations. Each surface point within the 3D visual analysis display exhibits its PM2.5 value by differing coloration and z-value (height component). The interactivity consists of using selection circles for stacked 3D displays of interpolated PM2.5 surfaces for different times (time series). The aim of this visual information analysis is the possible detection of periodical hotspots of high PM2.5 concentrations, which might be useful for people with respiratory diseases. For the detection of dynamic PM2.5 hotspot variations, we introduce thresholds for querying only the highest PM2.5 values of the surfaces. Afterwards, these points are aggregated into convex hulls (polygons), with the idea of comparing the size and shape of the PM2.5 hotspots in each created surface. The change of position and size of these polygons over time may be an indicator for air quality changes within an urban environment. Considering the above, this may be a starting point for the conception of a personalized routing solution for pedestrians or vehicle drivers with respiratory diseases, who want to avoid these hotspots of high PM2.5 concentrations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GI_Forum
GI_Forum Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
1.10
自引率
0.00%
发文量
9
审稿时长
23 weeks
期刊最新文献
Above-Ground Forest Biomass Estimation using Multispectral LiDAR Data in a Multilayered Coniferous Forest The State of Trajectory Visualization in Notebook Environments Development of a Standardized, Interdisciplinary Approach for Evaluating the Impact of Infrastructural Interventions on Sustainable Mobility A Comparative Study of Geocoder Performance on Unstructured Tweet Locations Application of Object-Based Image Analysis for Detecting and Differentiating between Shallow Landslides and Debris Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1