用于一般语义分割的cnn感知二进制MAP

Mahdyar Ravanbakhsh, Hossein Mousavi, Moin Nabi, Mohammad Rastegari, C. Regazzoni
{"title":"用于一般语义分割的cnn感知二进制MAP","authors":"Mahdyar Ravanbakhsh, Hossein Mousavi, Moin Nabi, Mohammad Rastegari, C. Regazzoni","doi":"10.1109/ICIP.2016.7532693","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a novel method for general semantic segmentation that can benefit from general semantics of Convolutional Neural Network (CNN). Our segmentation proposes visually and semantically coherent image segments. We use binary encoding of CNN features to overcome the difficulty of the clustering on the high-dimensional CNN feature space. These binary codes are very robust against noise and non-semantic changes in the image. These binary encoding can be embedded into the CNN as an extra layer at the end of the network. This results in real-time segmentation. To the best of our knowledge our method is the first attempt on general semantic image segmentation using CNN. All the previous papers were limited to few number of category of the images (e.g. PASCAL VOC). Experiments show that our segmentation algorithm outperform the state-of-the-art non-semantic segmentation methods by large margin.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"63 1","pages":"1923-1927"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"CNN-aware binary MAP for general semantic segmentation\",\"authors\":\"Mahdyar Ravanbakhsh, Hossein Mousavi, Moin Nabi, Mohammad Rastegari, C. Regazzoni\",\"doi\":\"10.1109/ICIP.2016.7532693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a novel method for general semantic segmentation that can benefit from general semantics of Convolutional Neural Network (CNN). Our segmentation proposes visually and semantically coherent image segments. We use binary encoding of CNN features to overcome the difficulty of the clustering on the high-dimensional CNN feature space. These binary codes are very robust against noise and non-semantic changes in the image. These binary encoding can be embedded into the CNN as an extra layer at the end of the network. This results in real-time segmentation. To the best of our knowledge our method is the first attempt on general semantic image segmentation using CNN. All the previous papers were limited to few number of category of the images (e.g. PASCAL VOC). Experiments show that our segmentation algorithm outperform the state-of-the-art non-semantic segmentation methods by large margin.\",\"PeriodicalId\":6521,\"journal\":{\"name\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"63 1\",\"pages\":\"1923-1927\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2016.7532693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文介绍了一种利用卷积神经网络(CNN)的通用语义进行通用语义分割的新方法。我们的分割提出了视觉上和语义上连贯的图像片段。我们使用CNN特征的二值编码来克服CNN高维特征空间上聚类的困难。这些二进制代码对图像中的噪声和非语义变化具有很强的鲁棒性。这些二进制编码可以作为网络末端的额外层嵌入到CNN中。这导致了实时分割。据我们所知,我们的方法是第一次尝试使用CNN进行一般语义图像分割。以往的所有论文都局限于图像的少数几个类别(如PASCAL VOC)。实验表明,我们的分割算法在很大程度上优于目前最先进的非语义分割方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CNN-aware binary MAP for general semantic segmentation
In this paper we introduce a novel method for general semantic segmentation that can benefit from general semantics of Convolutional Neural Network (CNN). Our segmentation proposes visually and semantically coherent image segments. We use binary encoding of CNN features to overcome the difficulty of the clustering on the high-dimensional CNN feature space. These binary codes are very robust against noise and non-semantic changes in the image. These binary encoding can be embedded into the CNN as an extra layer at the end of the network. This results in real-time segmentation. To the best of our knowledge our method is the first attempt on general semantic image segmentation using CNN. All the previous papers were limited to few number of category of the images (e.g. PASCAL VOC). Experiments show that our segmentation algorithm outperform the state-of-the-art non-semantic segmentation methods by large margin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content-adaptive pyramid representation for 3D object classification Automating the measurement of physiological parameters: A case study in the image analysis of cilia motion Horizon based orientation estimation for planetary surface navigation Softcast with per-carrier power-constrained channels Speeding-up a convolutional neural network by connecting an SVM network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1