隐私保护有针对性的广告和推荐

IF 1.7 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Business Analytics Pub Date : 2020-01-02 DOI:10.1080/2573234X.2020.1763862
Theja Tulabandhula, Shailesh Vaya, Aritra Dhar
{"title":"隐私保护有针对性的广告和推荐","authors":"Theja Tulabandhula, Shailesh Vaya, Aritra Dhar","doi":"10.1080/2573234X.2020.1763862","DOIUrl":null,"url":null,"abstract":"ABSTRACT Recommendation systems form the centerpiece of a rapidly growing trillion dollar online advertisement industry. Curating and storing profile information of users on web portals can seriously breach their privacy. Modifying such systems to achieve private recommendations without extensive redesign of the recommendation process typically requires communication of large encrypted information, making the whole process inefficient due to high latency. In this paper, we present an efficient recommendation system redesign, in which user profiles are maintained entirely on their device/web-browsers, and appropriate recommendations are fetched from web portals in an efficient privacy-preserving manner. We base this approach on precomputing compressed data structures from historical data and running low latency lookups when providing recommendations in real-time.","PeriodicalId":36417,"journal":{"name":"Journal of Business Analytics","volume":"1 1","pages":"32 - 55"},"PeriodicalIF":1.7000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Privacy preserving targeted advertising and recommendations\",\"authors\":\"Theja Tulabandhula, Shailesh Vaya, Aritra Dhar\",\"doi\":\"10.1080/2573234X.2020.1763862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Recommendation systems form the centerpiece of a rapidly growing trillion dollar online advertisement industry. Curating and storing profile information of users on web portals can seriously breach their privacy. Modifying such systems to achieve private recommendations without extensive redesign of the recommendation process typically requires communication of large encrypted information, making the whole process inefficient due to high latency. In this paper, we present an efficient recommendation system redesign, in which user profiles are maintained entirely on their device/web-browsers, and appropriate recommendations are fetched from web portals in an efficient privacy-preserving manner. We base this approach on precomputing compressed data structures from historical data and running low latency lookups when providing recommendations in real-time.\",\"PeriodicalId\":36417,\"journal\":{\"name\":\"Journal of Business Analytics\",\"volume\":\"1 1\",\"pages\":\"32 - 55\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Business Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/2573234X.2020.1763862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2573234X.2020.1763862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

推荐系统构成了快速增长的万亿美元在线广告行业的核心。在门户网站上管理和存储用户的个人资料信息会严重侵犯用户的隐私。修改这样的系统来实现私人推荐,而不需要对推荐过程进行广泛的重新设计,通常需要通信大量加密信息,这使得整个过程由于高延迟而效率低下。在本文中,我们提出了一个高效的推荐系统的重新设计,其中用户配置文件完全保存在他们的设备/web浏览器上,并以有效的隐私保护方式从门户网站获取适当的推荐。这种方法基于从历史数据中预计算压缩数据结构,并在实时提供建议时运行低延迟查找。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Privacy preserving targeted advertising and recommendations
ABSTRACT Recommendation systems form the centerpiece of a rapidly growing trillion dollar online advertisement industry. Curating and storing profile information of users on web portals can seriously breach their privacy. Modifying such systems to achieve private recommendations without extensive redesign of the recommendation process typically requires communication of large encrypted information, making the whole process inefficient due to high latency. In this paper, we present an efficient recommendation system redesign, in which user profiles are maintained entirely on their device/web-browsers, and appropriate recommendations are fetched from web portals in an efficient privacy-preserving manner. We base this approach on precomputing compressed data structures from historical data and running low latency lookups when providing recommendations in real-time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Business Analytics
Journal of Business Analytics Business, Management and Accounting-Management Information Systems
CiteScore
2.50
自引率
0.00%
发文量
13
期刊最新文献
Exploring the relationship between YouTube video optimisation practices and video rankings for online marketing: a machine learning approach The era of business analytics: identifying and ranking the differences between business intelligence and data science from practitioners’ perspective using the Delphi method Intelligent decision support system using nested ensemble approach for customer churn in the hotel industry Introducing technological disruption: how breaking media attention on corporate events impacts online sentiment An adaptive and enhanced framework for daily stock market prediction using feature selection and ensemble learning algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1