I. Kravtsiv, G. Bokun, M. Holovko, N. Prokopchuk, D. di Caprio
{"title":"非均匀固体电解质电极间区域的电荷和电场分布","authors":"I. Kravtsiv, G. Bokun, M. Holovko, N. Prokopchuk, D. di Caprio","doi":"10.5488/CMP.25.23501","DOIUrl":null,"url":null,"abstract":"A solid ionic conductor with cation conductivity in the interelectrode region is studied. Due to their large size, the anions are considered fixed and form a homogeneous neutralizing electric background. The model can be used to describe properties of ceramic conductors. For a statistical mechanical description of such systems, which are characterized by short-range Van der Waals interactions and long-range Coulomb interactions, an approach combining the collective variables method and the method of mean cell potentials is used. This formalism was applied in our previous work [Bokun G., Kravtsiv I., Holovko M., Vikhrenko V., di Caprio D., Condens. Matter Phys., 2019, 29, 3351] to a homogeneous state and in the present work is extended to an inhomogeneous case induced by an external electric field. As a result, mean cell potentials become functionals of the density field and can be described by a closed system of integral equations. We investigate the solution of this problem in the lattice approximation and study charge and electric field distributions in the interelectrode region as functions of plate electrode charges. The differential electric capacitance is subsequently calculated and discussed.","PeriodicalId":10528,"journal":{"name":"Condensed Matter Physics","volume":"51 1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Charge and electric field distributions in the interelectrode region of an inhomogeneous solid electrolyte\",\"authors\":\"I. Kravtsiv, G. Bokun, M. Holovko, N. Prokopchuk, D. di Caprio\",\"doi\":\"10.5488/CMP.25.23501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A solid ionic conductor with cation conductivity in the interelectrode region is studied. Due to their large size, the anions are considered fixed and form a homogeneous neutralizing electric background. The model can be used to describe properties of ceramic conductors. For a statistical mechanical description of such systems, which are characterized by short-range Van der Waals interactions and long-range Coulomb interactions, an approach combining the collective variables method and the method of mean cell potentials is used. This formalism was applied in our previous work [Bokun G., Kravtsiv I., Holovko M., Vikhrenko V., di Caprio D., Condens. Matter Phys., 2019, 29, 3351] to a homogeneous state and in the present work is extended to an inhomogeneous case induced by an external electric field. As a result, mean cell potentials become functionals of the density field and can be described by a closed system of integral equations. We investigate the solution of this problem in the lattice approximation and study charge and electric field distributions in the interelectrode region as functions of plate electrode charges. The differential electric capacitance is subsequently calculated and discussed.\",\"PeriodicalId\":10528,\"journal\":{\"name\":\"Condensed Matter Physics\",\"volume\":\"51 1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5488/CMP.25.23501\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5488/CMP.25.23501","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Charge and electric field distributions in the interelectrode region of an inhomogeneous solid electrolyte
A solid ionic conductor with cation conductivity in the interelectrode region is studied. Due to their large size, the anions are considered fixed and form a homogeneous neutralizing electric background. The model can be used to describe properties of ceramic conductors. For a statistical mechanical description of such systems, which are characterized by short-range Van der Waals interactions and long-range Coulomb interactions, an approach combining the collective variables method and the method of mean cell potentials is used. This formalism was applied in our previous work [Bokun G., Kravtsiv I., Holovko M., Vikhrenko V., di Caprio D., Condens. Matter Phys., 2019, 29, 3351] to a homogeneous state and in the present work is extended to an inhomogeneous case induced by an external electric field. As a result, mean cell potentials become functionals of the density field and can be described by a closed system of integral equations. We investigate the solution of this problem in the lattice approximation and study charge and electric field distributions in the interelectrode region as functions of plate electrode charges. The differential electric capacitance is subsequently calculated and discussed.
期刊介绍:
Condensed Matter Physics contains original and review articles in the field of statistical mechanics and thermodynamics of equilibrium and nonequilibrium processes, relativistic mechanics of interacting particle systems.The main attention is paid to physics of solid, liquid and amorphous systems, phase equilibria and phase transitions, thermal, structural, electric, magnetic and optical properties of condensed matter. Condensed Matter Physics is published quarterly.