离子载体打破了鲍曼不动杆菌的多重耐药。

IF 4.1 3区 生物学 Q2 CELL BIOLOGY Microbial Cell Pub Date : 2022-03-07 DOI:10.15698/mic2022.03.772
David M P De Oliveira, Mark J Walker
{"title":"离子载体打破了鲍曼不动杆菌的多重耐药。","authors":"David M P De Oliveira,&nbsp;Mark J Walker","doi":"10.15698/mic2022.03.772","DOIUrl":null,"url":null,"abstract":"<p><p>Within intensive care units, multi-drug resistant <i>Acinetobacter baumannii</i> outbreaks are a frequent cause of ventilator-associated pneumonia. During the on-going COVID-19 pandemic, patients who receive ventilator support experience a 2-fold increased risk of mortality when they contract a secondary <i>A. baumannii</i> pulmonary infection. In our recent paper (De Oliveira <i>et al.</i> (2022), Mbio, doi: 10.1128/mbio.03517-21), we demonstrate that the 8-hydroxquinoline ionophore, PBT2 breaks the resistance of <i>A. baumannii</i> to tetracycline class antibiotics. <i>In vitro</i>, the combination of PBT2 and zinc with either tetracycline, doxycycline, or tigecycline was shown to be bactericidal against multi-drug-resistant <i>A. baumannii</i>, and any resistance that did arise imposed a fitness cost. Using a murine model of pulmonary infection, treatment with PBT2 in combination with tetracycline or tigecycline proved efficacious against multidrug-resistant <i>A. baumannii</i>. These findings suggest that PBT2 may find utility as a resistance breaker to rescue the efficacy of tetracycline-class antibiotics commonly employed to treat multi-drug resistant <i>A. baumannii</i> infections.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8890622/pdf/","citationCount":"1","resultStr":"{\"title\":\"An ionophore breaks the multi-drug-resistance of <i>Acinetobacter baumannii</i>.\",\"authors\":\"David M P De Oliveira,&nbsp;Mark J Walker\",\"doi\":\"10.15698/mic2022.03.772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Within intensive care units, multi-drug resistant <i>Acinetobacter baumannii</i> outbreaks are a frequent cause of ventilator-associated pneumonia. During the on-going COVID-19 pandemic, patients who receive ventilator support experience a 2-fold increased risk of mortality when they contract a secondary <i>A. baumannii</i> pulmonary infection. In our recent paper (De Oliveira <i>et al.</i> (2022), Mbio, doi: 10.1128/mbio.03517-21), we demonstrate that the 8-hydroxquinoline ionophore, PBT2 breaks the resistance of <i>A. baumannii</i> to tetracycline class antibiotics. <i>In vitro</i>, the combination of PBT2 and zinc with either tetracycline, doxycycline, or tigecycline was shown to be bactericidal against multi-drug-resistant <i>A. baumannii</i>, and any resistance that did arise imposed a fitness cost. Using a murine model of pulmonary infection, treatment with PBT2 in combination with tetracycline or tigecycline proved efficacious against multidrug-resistant <i>A. baumannii</i>. These findings suggest that PBT2 may find utility as a resistance breaker to rescue the efficacy of tetracycline-class antibiotics commonly employed to treat multi-drug resistant <i>A. baumannii</i> infections.</p>\",\"PeriodicalId\":18397,\"journal\":{\"name\":\"Microbial Cell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8890622/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.15698/mic2022.03.772\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15698/mic2022.03.772","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

在重症监护病房,多重耐药鲍曼不动杆菌暴发是呼吸机相关性肺炎的常见原因。在持续的COVID-19大流行期间,接受呼吸机支持的患者在感染继发性鲍曼不动杆菌肺部感染时死亡风险增加了两倍。在我们最近的论文(De Oliveira et al. (2022), Mbio, doi: 10.1128/ Mbio .03517-21)中,我们证明了8-羟基喹啉离子载体PBT2可以打破鲍曼不动杆菌对四环素类抗生素的耐药性。在体外实验中,PBT2和锌与四环素、多西环素或替加环素的组合被证明对多重耐药鲍曼不动杆菌具有杀菌作用,并且任何耐药性的产生都施加了适应度成本。通过小鼠肺部感染模型,PBT2联合四环素或替加环素治疗对多重耐药鲍曼不动杆菌有效。这些发现表明,PBT2可以作为一种耐药性破环剂,挽救通常用于治疗多重耐药鲍曼不动杆菌感染的四环素类抗生素的疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An ionophore breaks the multi-drug-resistance of Acinetobacter baumannii.

Within intensive care units, multi-drug resistant Acinetobacter baumannii outbreaks are a frequent cause of ventilator-associated pneumonia. During the on-going COVID-19 pandemic, patients who receive ventilator support experience a 2-fold increased risk of mortality when they contract a secondary A. baumannii pulmonary infection. In our recent paper (De Oliveira et al. (2022), Mbio, doi: 10.1128/mbio.03517-21), we demonstrate that the 8-hydroxquinoline ionophore, PBT2 breaks the resistance of A. baumannii to tetracycline class antibiotics. In vitro, the combination of PBT2 and zinc with either tetracycline, doxycycline, or tigecycline was shown to be bactericidal against multi-drug-resistant A. baumannii, and any resistance that did arise imposed a fitness cost. Using a murine model of pulmonary infection, treatment with PBT2 in combination with tetracycline or tigecycline proved efficacious against multidrug-resistant A. baumannii. These findings suggest that PBT2 may find utility as a resistance breaker to rescue the efficacy of tetracycline-class antibiotics commonly employed to treat multi-drug resistant A. baumannii infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Cell
Microbial Cell Multiple-
CiteScore
6.40
自引率
0.00%
发文量
32
审稿时长
12 weeks
期刊最新文献
Fecal gelatinase does not predict mortality in patients with alcohol-associated hepatitis. Patterns of protein synthesis in the budding yeast cell cycle: variable or constant? Direct detection of stringent alarmones (pp)pGpp using malachite green. Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts. Promoter methylation and increased expression of PD-L1 in patients with active tuberculosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1