{"title":"基于判别语义表示学习的零概率分类","authors":"Meng Ye, Yuhong Guo","doi":"10.1109/CVPR.2017.542","DOIUrl":null,"url":null,"abstract":"Zero-shot learning, a special case of unsupervised domain adaptation where the source and target domains have disjoint label spaces, has become increasingly popular in the computer vision community. In this paper, we propose a novel zero-shot learning method based on discriminative sparse non-negative matrix factorization. The proposed approach aims to identify a set of common high-level semantic components across the two domains via non-negative sparse matrix factorization, while enforcing the representation vectors of the images in this common component-based space to be discriminatively aligned with the attribute-based label representation vectors. To fully exploit the aligned semantic information contained in the learned representation vectors of the instances, we develop a label propagation based testing procedure to classify the unlabeled instances from the unseen classes in the target domain. We conduct experiments on four standard zero-shot learning image datasets, by comparing the proposed approach to the state-of-the-art zero-shot learning methods. The empirical results demonstrate the efficacy of the proposed approach.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"55 1","pages":"5103-5111"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"119","resultStr":"{\"title\":\"Zero-Shot Classification with Discriminative Semantic Representation Learning\",\"authors\":\"Meng Ye, Yuhong Guo\",\"doi\":\"10.1109/CVPR.2017.542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zero-shot learning, a special case of unsupervised domain adaptation where the source and target domains have disjoint label spaces, has become increasingly popular in the computer vision community. In this paper, we propose a novel zero-shot learning method based on discriminative sparse non-negative matrix factorization. The proposed approach aims to identify a set of common high-level semantic components across the two domains via non-negative sparse matrix factorization, while enforcing the representation vectors of the images in this common component-based space to be discriminatively aligned with the attribute-based label representation vectors. To fully exploit the aligned semantic information contained in the learned representation vectors of the instances, we develop a label propagation based testing procedure to classify the unlabeled instances from the unseen classes in the target domain. We conduct experiments on four standard zero-shot learning image datasets, by comparing the proposed approach to the state-of-the-art zero-shot learning methods. The empirical results demonstrate the efficacy of the proposed approach.\",\"PeriodicalId\":6631,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"55 1\",\"pages\":\"5103-5111\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"119\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2017.542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Zero-Shot Classification with Discriminative Semantic Representation Learning
Zero-shot learning, a special case of unsupervised domain adaptation where the source and target domains have disjoint label spaces, has become increasingly popular in the computer vision community. In this paper, we propose a novel zero-shot learning method based on discriminative sparse non-negative matrix factorization. The proposed approach aims to identify a set of common high-level semantic components across the two domains via non-negative sparse matrix factorization, while enforcing the representation vectors of the images in this common component-based space to be discriminatively aligned with the attribute-based label representation vectors. To fully exploit the aligned semantic information contained in the learned representation vectors of the instances, we develop a label propagation based testing procedure to classify the unlabeled instances from the unseen classes in the target domain. We conduct experiments on four standard zero-shot learning image datasets, by comparing the proposed approach to the state-of-the-art zero-shot learning methods. The empirical results demonstrate the efficacy of the proposed approach.