{"title":"比较二视图和三视图计算机视觉","authors":"Zsolt Levente Kucsván","doi":"10.2478/ausi-2019-0003","DOIUrl":null,"url":null,"abstract":"Abstract To reconstruct the points in three dimensional space, we need at least two images. In this paper we compared two different methods: the first uses only two images, the second one uses three. During the research we measured how camera resolution, camera angles and camera distances influence the number of reconstructed points and the dispersion of them. The paper presents that using the two-view method, we can reconstruct significantly more points than using the other one, but the dispersion of points is smaller if we use the three-view method. Taking into consideration the different camera settings, we can say that both the two- and three-view method behaves the same, and the best parameters are also the same for both methods.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"1 1","pages":"41 - 51"},"PeriodicalIF":0.3000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing two- and three-view computer vision\",\"authors\":\"Zsolt Levente Kucsván\",\"doi\":\"10.2478/ausi-2019-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract To reconstruct the points in three dimensional space, we need at least two images. In this paper we compared two different methods: the first uses only two images, the second one uses three. During the research we measured how camera resolution, camera angles and camera distances influence the number of reconstructed points and the dispersion of them. The paper presents that using the two-view method, we can reconstruct significantly more points than using the other one, but the dispersion of points is smaller if we use the three-view method. Taking into consideration the different camera settings, we can say that both the two- and three-view method behaves the same, and the best parameters are also the same for both methods.\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"1 1\",\"pages\":\"41 - 51\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2019-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2019-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Abstract To reconstruct the points in three dimensional space, we need at least two images. In this paper we compared two different methods: the first uses only two images, the second one uses three. During the research we measured how camera resolution, camera angles and camera distances influence the number of reconstructed points and the dispersion of them. The paper presents that using the two-view method, we can reconstruct significantly more points than using the other one, but the dispersion of points is smaller if we use the three-view method. Taking into consideration the different camera settings, we can say that both the two- and three-view method behaves the same, and the best parameters are also the same for both methods.