超高q微腔中的自发对称破缺

Yun-Feng Xiao, Qi-Tao Cao, Heming Wang, C. Dong, H. Jing, Ruishan Liu, Xi Chen, L. Ge, Q. Gong
{"title":"超高q微腔中的自发对称破缺","authors":"Yun-Feng Xiao, Qi-Tao Cao, Heming Wang, C. Dong, H. Jing, Ruishan Liu, Xi Chen, L. Ge, Q. Gong","doi":"10.1109/IPCON.2017.8116182","DOIUrl":null,"url":null,"abstract":"Spontaneous chiral symmetry breaking is a ubiquitous property in nature and diverse fields of modern physics. However, such symmetry breaking has been elusive experimentally in the optical systems, which usually demands multiple identical subsystems [1]. As a prominent photonic device, the ultrahigh-Q whispering-gallery mode (WGM) microresonator supports clockwise (CW) and counterclockwise (CCW) propagating waves coupled to each other, leading to symmetric and antisymmetric standing-wave modes with equal CW and CCW amplitudes. The demonstrations of such overall chirality have to rely on external perturbations to a resonator, either by breaking the parity or time-reversal symmetry [2,3]. The chirality with unbalanced CW and CCW components not only attracts general interest in physics, but also is of importance in novel devices [2,3]. Here, we experimentally demonstrate the spontaneous chirality in a single WGM microresonator (Fig. 1) without any explicit breaking of parity or time-reversal symmetry.","PeriodicalId":6657,"journal":{"name":"2017 IEEE Photonics Conference (IPC) Part II","volume":"35 1","pages":"457-458"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spontaneous symmetry breaking in an ultrahigh-Q microcavity\",\"authors\":\"Yun-Feng Xiao, Qi-Tao Cao, Heming Wang, C. Dong, H. Jing, Ruishan Liu, Xi Chen, L. Ge, Q. Gong\",\"doi\":\"10.1109/IPCON.2017.8116182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spontaneous chiral symmetry breaking is a ubiquitous property in nature and diverse fields of modern physics. However, such symmetry breaking has been elusive experimentally in the optical systems, which usually demands multiple identical subsystems [1]. As a prominent photonic device, the ultrahigh-Q whispering-gallery mode (WGM) microresonator supports clockwise (CW) and counterclockwise (CCW) propagating waves coupled to each other, leading to symmetric and antisymmetric standing-wave modes with equal CW and CCW amplitudes. The demonstrations of such overall chirality have to rely on external perturbations to a resonator, either by breaking the parity or time-reversal symmetry [2,3]. The chirality with unbalanced CW and CCW components not only attracts general interest in physics, but also is of importance in novel devices [2,3]. Here, we experimentally demonstrate the spontaneous chirality in a single WGM microresonator (Fig. 1) without any explicit breaking of parity or time-reversal symmetry.\",\"PeriodicalId\":6657,\"journal\":{\"name\":\"2017 IEEE Photonics Conference (IPC) Part II\",\"volume\":\"35 1\",\"pages\":\"457-458\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Photonics Conference (IPC) Part II\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPCON.2017.8116182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Photonics Conference (IPC) Part II","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPCON.2017.8116182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自发手性对称破缺是自然界和现代物理学中普遍存在的性质。然而,这种对称性破缺在光学系统的实验中一直难以捉摸,因为光学系统通常需要多个相同的子系统[1]。作为一种杰出的光子器件,超高q低语廊模式(WGM)微谐振器支持顺时针(CW)和逆时针(CCW)相互耦合的传播波,从而产生具有相同CW和CCW振幅的对称和反对称驻波模式。这种整体手性的证明必须依赖于谐振器的外部扰动,要么是通过打破宇称,要么是时间反转对称性[2,3]。不平衡连续波和连续波分量的手性不仅引起了物理学的普遍兴趣,而且在新型器件中也很重要[2,3]。在这里,我们通过实验证明了单个WGM微谐振器中的自发手性(图1),而没有任何明显的宇称或时间反转对称性的破坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spontaneous symmetry breaking in an ultrahigh-Q microcavity
Spontaneous chiral symmetry breaking is a ubiquitous property in nature and diverse fields of modern physics. However, such symmetry breaking has been elusive experimentally in the optical systems, which usually demands multiple identical subsystems [1]. As a prominent photonic device, the ultrahigh-Q whispering-gallery mode (WGM) microresonator supports clockwise (CW) and counterclockwise (CCW) propagating waves coupled to each other, leading to symmetric and antisymmetric standing-wave modes with equal CW and CCW amplitudes. The demonstrations of such overall chirality have to rely on external perturbations to a resonator, either by breaking the parity or time-reversal symmetry [2,3]. The chirality with unbalanced CW and CCW components not only attracts general interest in physics, but also is of importance in novel devices [2,3]. Here, we experimentally demonstrate the spontaneous chirality in a single WGM microresonator (Fig. 1) without any explicit breaking of parity or time-reversal symmetry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Broadband wavelength conversion based on on-chip nonlinear optical loop mirror Surface nanoscale axial photonics (SNAP) at the silica microcapillary with ultrathin wall Digital back-propagation for unrepeatered transmission MicroLED-pumped perovskite quantum dot color converter for visible light communications Development, performance and application of novel GaN-based micro-LED arrays with individually addressable n-electrodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1