基于多边形识别的恒星识别系统

IF 0.1 4区 工程技术 Q4 ENGINEERING, AEROSPACE Aerospace America Pub Date : 2023-08-24 DOI:10.3390/aerospace10090748
Gustavo E. Ramos-Alcaraz, Miguel A. Alonso-Arévalo, J. M. Nuñez-Alfonso
{"title":"基于多边形识别的恒星识别系统","authors":"Gustavo E. Ramos-Alcaraz, Miguel A. Alonso-Arévalo, J. M. Nuñez-Alfonso","doi":"10.3390/aerospace10090748","DOIUrl":null,"url":null,"abstract":"Accurate attitude determination is crucial for satellites and spacecraft. Among attitude determination devices, star sensors are the most accurate. Solving the lost-in-space problem is the most critical function of the star sensor. Our research introduces a novel star-identification system that utilizes a polygon-recognition algorithm to assign a unique complex number to polygons created by stars. This system aims to solve the lost-in-space problem. Our system includes a full solution with a lens, image sensor, processing unit, and algorithm implementation. To test the system’s performance, we analyzed 100 night sky images that resembled what a real star sensor in orbit would experience. We used a k-d tree algorithm to accelerate the search in the star catalog of complex numbers. We implemented various verification methods, including internal polygon verification and a voting mechanism, to ensure the system’s reliability. We obtained the star database used as a reference from the Gaia DR2 catalog, which we filtered, to eliminate irrelevant stars, and which we arranged by apparent magnitude. Despite manually introducing up to three false stars, the system successfully identified at least one star in 97% of the analyzed images.","PeriodicalId":50845,"journal":{"name":"Aerospace America","volume":"18 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Star-Identification System Based on Polygon Recognition\",\"authors\":\"Gustavo E. Ramos-Alcaraz, Miguel A. Alonso-Arévalo, J. M. Nuñez-Alfonso\",\"doi\":\"10.3390/aerospace10090748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate attitude determination is crucial for satellites and spacecraft. Among attitude determination devices, star sensors are the most accurate. Solving the lost-in-space problem is the most critical function of the star sensor. Our research introduces a novel star-identification system that utilizes a polygon-recognition algorithm to assign a unique complex number to polygons created by stars. This system aims to solve the lost-in-space problem. Our system includes a full solution with a lens, image sensor, processing unit, and algorithm implementation. To test the system’s performance, we analyzed 100 night sky images that resembled what a real star sensor in orbit would experience. We used a k-d tree algorithm to accelerate the search in the star catalog of complex numbers. We implemented various verification methods, including internal polygon verification and a voting mechanism, to ensure the system’s reliability. We obtained the star database used as a reference from the Gaia DR2 catalog, which we filtered, to eliminate irrelevant stars, and which we arranged by apparent magnitude. Despite manually introducing up to three false stars, the system successfully identified at least one star in 97% of the analyzed images.\",\"PeriodicalId\":50845,\"journal\":{\"name\":\"Aerospace America\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace America\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace10090748\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace America","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace10090748","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

准确的姿态确定对卫星和航天器至关重要。在姿态确定装置中,星敏感器精度最高。解决空间丢失问题是星敏感器最关键的功能。我们的研究介绍了一种新的恒星识别系统,该系统利用多边形识别算法为恒星产生的多边形分配唯一的复数。该系统旨在解决空间丢失问题。我们的系统包括一个完整的解决方案,包括镜头、图像传感器、处理单元和算法实现。为了测试该系统的性能,我们分析了100张夜空图像,这些图像与轨道上真正的恒星传感器所经历的图像相似。我们使用k-d树算法来加速在复数星表中的搜索。我们实现了多种验证方法,包括内部多边形验证和投票机制,以确保系统的可靠性。我们从盖亚DR2星表中获得了作为参考的恒星数据库,我们对其进行了过滤,以消除不相关的恒星,并按视星等排列。尽管人工引入了多达三颗假星,但该系统在97%的分析图像中成功识别了至少一颗星。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Star-Identification System Based on Polygon Recognition
Accurate attitude determination is crucial for satellites and spacecraft. Among attitude determination devices, star sensors are the most accurate. Solving the lost-in-space problem is the most critical function of the star sensor. Our research introduces a novel star-identification system that utilizes a polygon-recognition algorithm to assign a unique complex number to polygons created by stars. This system aims to solve the lost-in-space problem. Our system includes a full solution with a lens, image sensor, processing unit, and algorithm implementation. To test the system’s performance, we analyzed 100 night sky images that resembled what a real star sensor in orbit would experience. We used a k-d tree algorithm to accelerate the search in the star catalog of complex numbers. We implemented various verification methods, including internal polygon verification and a voting mechanism, to ensure the system’s reliability. We obtained the star database used as a reference from the Gaia DR2 catalog, which we filtered, to eliminate irrelevant stars, and which we arranged by apparent magnitude. Despite manually introducing up to three false stars, the system successfully identified at least one star in 97% of the analyzed images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace America
Aerospace America 工程技术-工程:宇航
自引率
0.00%
发文量
9
审稿时长
4-8 weeks
期刊最新文献
A Novel Digital Twin Framework for Aeroengine Performance Diagnosis GPU Acceleration of CFD Simulations in OpenFOAM Recent Advances in Airfoil Self-Noise Passive Reduction Characteristics of Vortices around Forward Swept Wing at Low Speeds/High Angles of Attack A Digital-Twin-Based Detection and Protection Framework for SDC-Induced Sinkhole and Grayhole Nodes in Satellite Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1