PointSpherical:球面坐标中点云学习的深度形状上下文

Hua Lin, Bin Fan, Yongcheng Liu, Yirong Yang, Zheng Pan, Jianbo Shi, Chunhong Pan, Huiwen Xie
{"title":"PointSpherical:球面坐标中点云学习的深度形状上下文","authors":"Hua Lin, Bin Fan, Yongcheng Liu, Yirong Yang, Zheng Pan, Jianbo Shi, Chunhong Pan, Huiwen Xie","doi":"10.1109/ICPR48806.2021.9412978","DOIUrl":null,"url":null,"abstract":"We propose Spherical Hierarchical modeling of 3D point cloud. Inspired by Shape Context, we design a receptive field on each 3D point by placing a spherical coordinate on it. We sample points using the furthest point method and creating overlapping balls of points. We divide the space into radial, polar angular, and azimuthal angular bins on which we form a Spherical Hierarchy for each ball. We apply 1x1 CNN convolution on points to start the initial feature extraction. Repeated 3D CNN and max-pooling over the Spherical bins propagate contextual information until all the information is condensed in the center bin. Extensive experiments on five datasets strongly evidence that our method outperforms current models on various Point Cloud Learning tasks, including 2D/3D shape classification, 3D part segmentation, and 3D semantic segmentation.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"1 1","pages":"10266-10273"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PointSpherical: Deep Shape Context for Point Cloud Learning in Spherical Coordinates\",\"authors\":\"Hua Lin, Bin Fan, Yongcheng Liu, Yirong Yang, Zheng Pan, Jianbo Shi, Chunhong Pan, Huiwen Xie\",\"doi\":\"10.1109/ICPR48806.2021.9412978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose Spherical Hierarchical modeling of 3D point cloud. Inspired by Shape Context, we design a receptive field on each 3D point by placing a spherical coordinate on it. We sample points using the furthest point method and creating overlapping balls of points. We divide the space into radial, polar angular, and azimuthal angular bins on which we form a Spherical Hierarchy for each ball. We apply 1x1 CNN convolution on points to start the initial feature extraction. Repeated 3D CNN and max-pooling over the Spherical bins propagate contextual information until all the information is condensed in the center bin. Extensive experiments on five datasets strongly evidence that our method outperforms current models on various Point Cloud Learning tasks, including 2D/3D shape classification, 3D part segmentation, and 3D semantic segmentation.\",\"PeriodicalId\":6783,\"journal\":{\"name\":\"2020 25th International Conference on Pattern Recognition (ICPR)\",\"volume\":\"1 1\",\"pages\":\"10266-10273\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 25th International Conference on Pattern Recognition (ICPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR48806.2021.9412978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9412978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了三维点云的球面分层建模方法。受Shape Context的启发,我们通过在每个3D点上放置一个球面坐标来设计一个接受场。我们使用最远点方法采样点,并创建重叠的点球。我们将空间划分为径向、极角和方位角,并在此基础上为每个球形成一个球形层次。我们对点应用1x1 CNN卷积来开始初始特征提取。在球面箱上重复3D CNN和max-pooling传播上下文信息,直到所有信息都浓缩在中心箱中。在五个数据集上进行的大量实验有力地证明,我们的方法在各种点云学习任务上优于当前模型,包括2D/3D形状分类、3D零件分割和3D语义分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PointSpherical: Deep Shape Context for Point Cloud Learning in Spherical Coordinates
We propose Spherical Hierarchical modeling of 3D point cloud. Inspired by Shape Context, we design a receptive field on each 3D point by placing a spherical coordinate on it. We sample points using the furthest point method and creating overlapping balls of points. We divide the space into radial, polar angular, and azimuthal angular bins on which we form a Spherical Hierarchy for each ball. We apply 1x1 CNN convolution on points to start the initial feature extraction. Repeated 3D CNN and max-pooling over the Spherical bins propagate contextual information until all the information is condensed in the center bin. Extensive experiments on five datasets strongly evidence that our method outperforms current models on various Point Cloud Learning tasks, including 2D/3D shape classification, 3D part segmentation, and 3D semantic segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trajectory representation learning for Multi-Task NMRDP planning Semantic Segmentation Refinement Using Entropy and Boundary-guided Monte Carlo Sampling and Directed Regional Search A Randomized Algorithm for Sparse Recovery An Empirical Bayes Approach to Topic Modeling To Honor our Heroes: Analysis of the Obituaries of Australians Killed in Action in WWI and WWII
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1