{"title":"基于IGAN算法的互联网语音去噪方法","authors":"Sanchuan Luo","doi":"10.3233/jcm-226798","DOIUrl":null,"url":null,"abstract":"At present, to settle the question of excessive noise in the speech signal during the call of mobile devices in China, the research proposes that the Wiener filter and the generative adversarial network are combined into the IGAN algorithm. Firstly, the Wiener filter regularization algorithm is introduced to construct the preprocessing model of the speech signal; then the preprocessing model is fused with the generative adversarial network algorithm to construct the denoising model. Finally, the performance analysis and simulation experiments of the application effect of the model are carried out. The results show that in the experiment comparing IGAN with five traditional algorithms, when the SNR ratio is increased to 17.5 dB, the MOS and PESQ scores under the IGAN method can reach 4.9 and 3.5 respectively, and the DNN effect is second only to IGAN. Other algorithms perform poorly. Then compare the number of iterations and the loss value between the two. When the network voice signal begins to converge, the loss value corresponding to DNN is 1.132; while the loss value of IGAN is about 0.573, it can be found that the loss value of IGAN has dropped by half, which shows that IGAN Build the model with a smaller loss value. And IGAN tends to converge when iteratively is performed for about 200 times, and the average peak SNR can reach up to 33.85 dB, an increase of nearly 1.02 dB, and the effect is remarkable. This all shows that the IGAN algorithm has the best denoising performance for network speech signals, improves the denoising efficiency, and is conducive to obtaining a denoising signal with a higher fit with the clean signal, so that mobile devices can better serve the people.","PeriodicalId":14668,"journal":{"name":"J. Comput. Methods Sci. Eng.","volume":"21 1","pages":"1929-1940"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internet speech denoising method based on IGAN algorithm\",\"authors\":\"Sanchuan Luo\",\"doi\":\"10.3233/jcm-226798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, to settle the question of excessive noise in the speech signal during the call of mobile devices in China, the research proposes that the Wiener filter and the generative adversarial network are combined into the IGAN algorithm. Firstly, the Wiener filter regularization algorithm is introduced to construct the preprocessing model of the speech signal; then the preprocessing model is fused with the generative adversarial network algorithm to construct the denoising model. Finally, the performance analysis and simulation experiments of the application effect of the model are carried out. The results show that in the experiment comparing IGAN with five traditional algorithms, when the SNR ratio is increased to 17.5 dB, the MOS and PESQ scores under the IGAN method can reach 4.9 and 3.5 respectively, and the DNN effect is second only to IGAN. Other algorithms perform poorly. Then compare the number of iterations and the loss value between the two. When the network voice signal begins to converge, the loss value corresponding to DNN is 1.132; while the loss value of IGAN is about 0.573, it can be found that the loss value of IGAN has dropped by half, which shows that IGAN Build the model with a smaller loss value. And IGAN tends to converge when iteratively is performed for about 200 times, and the average peak SNR can reach up to 33.85 dB, an increase of nearly 1.02 dB, and the effect is remarkable. This all shows that the IGAN algorithm has the best denoising performance for network speech signals, improves the denoising efficiency, and is conducive to obtaining a denoising signal with a higher fit with the clean signal, so that mobile devices can better serve the people.\",\"PeriodicalId\":14668,\"journal\":{\"name\":\"J. Comput. Methods Sci. Eng.\",\"volume\":\"21 1\",\"pages\":\"1929-1940\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Comput. Methods Sci. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jcm-226798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Comput. Methods Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcm-226798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Internet speech denoising method based on IGAN algorithm
At present, to settle the question of excessive noise in the speech signal during the call of mobile devices in China, the research proposes that the Wiener filter and the generative adversarial network are combined into the IGAN algorithm. Firstly, the Wiener filter regularization algorithm is introduced to construct the preprocessing model of the speech signal; then the preprocessing model is fused with the generative adversarial network algorithm to construct the denoising model. Finally, the performance analysis and simulation experiments of the application effect of the model are carried out. The results show that in the experiment comparing IGAN with five traditional algorithms, when the SNR ratio is increased to 17.5 dB, the MOS and PESQ scores under the IGAN method can reach 4.9 and 3.5 respectively, and the DNN effect is second only to IGAN. Other algorithms perform poorly. Then compare the number of iterations and the loss value between the two. When the network voice signal begins to converge, the loss value corresponding to DNN is 1.132; while the loss value of IGAN is about 0.573, it can be found that the loss value of IGAN has dropped by half, which shows that IGAN Build the model with a smaller loss value. And IGAN tends to converge when iteratively is performed for about 200 times, and the average peak SNR can reach up to 33.85 dB, an increase of nearly 1.02 dB, and the effect is remarkable. This all shows that the IGAN algorithm has the best denoising performance for network speech signals, improves the denoising efficiency, and is conducive to obtaining a denoising signal with a higher fit with the clean signal, so that mobile devices can better serve the people.