{"title":"基于水下主动立体的游动鱼类动态三维捕获","authors":"Ryo Kawahara, Shohei Nobuhara, Takashi Matsuyama","doi":"10.1016/j.mio.2016.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an underwater active stereo system that realizes 3D capture of dynamic objects in water such as swimming fish. The key idea on realizing a practical underwater 3D sensing is to model the refraction process by our pixel-wise varifocal camera model that provides efficient forward (3D to 2D) projections as well as an underwater projector–camera calibration. Evaluations demonstrate that our method achieves reasonable calibration accuracy using off-the-shelf cameras and projectors, and provides a 3D capture of real swimming fish in water.</p></div>","PeriodicalId":100922,"journal":{"name":"Methods in Oceanography","volume":"17 ","pages":"Pages 118-137"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mio.2016.08.002","citationCount":"12","resultStr":"{\"title\":\"Dynamic 3D capture of swimming fish by underwater active stereo\",\"authors\":\"Ryo Kawahara, Shohei Nobuhara, Takashi Matsuyama\",\"doi\":\"10.1016/j.mio.2016.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents an underwater active stereo system that realizes 3D capture of dynamic objects in water such as swimming fish. The key idea on realizing a practical underwater 3D sensing is to model the refraction process by our pixel-wise varifocal camera model that provides efficient forward (3D to 2D) projections as well as an underwater projector–camera calibration. Evaluations demonstrate that our method achieves reasonable calibration accuracy using off-the-shelf cameras and projectors, and provides a 3D capture of real swimming fish in water.</p></div>\",\"PeriodicalId\":100922,\"journal\":{\"name\":\"Methods in Oceanography\",\"volume\":\"17 \",\"pages\":\"Pages 118-137\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mio.2016.08.002\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in Oceanography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211122015300074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211122015300074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic 3D capture of swimming fish by underwater active stereo
This paper presents an underwater active stereo system that realizes 3D capture of dynamic objects in water such as swimming fish. The key idea on realizing a practical underwater 3D sensing is to model the refraction process by our pixel-wise varifocal camera model that provides efficient forward (3D to 2D) projections as well as an underwater projector–camera calibration. Evaluations demonstrate that our method achieves reasonable calibration accuracy using off-the-shelf cameras and projectors, and provides a 3D capture of real swimming fish in water.