面向手术室手术计划的高效算法

D. Clavel, C. Mahulea, J. Albareda, M. Suárez
{"title":"面向手术室手术计划的高效算法","authors":"D. Clavel, C. Mahulea, J. Albareda, M. Suárez","doi":"10.1109/ETFA.2017.8247620","DOIUrl":null,"url":null,"abstract":"In this paper, the scheduling problem of elective patients in the Orthopedic Department of the “Lozano Blesa” Hospital in Zaragoza is considered. This problem takes into account two contradictory objectives: obtain a given occupation rate of the Operation Room (OR) and respect as much as possible the preference order of the patients in the waiting list. Three different mathematical models are discussed: 1) Quadratic Assignment Problem (QAP); 2) a Mixed Integer Linear Programing (MILP) model; and 3) Generalized Assignment Problem (GAP). These models solve combinatorial problems with a high computational cost; for this reason, heuristic methods have been used to solve large instances. In particular, 1) a meta-heuristic Genetic Algorithm (GA) for the QAP; 2) a heuristic Steepest Descent Multiplier Adjustment Method (SDMAM) for the GAP; and 3) a heuristic iterative method for MILP. Finally, the models and the heuristics are compared according to the occupation rate and the preference order criteria.","PeriodicalId":6522,"journal":{"name":"2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"1 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards efficient algorithms for planning surgeries in operation rooms\",\"authors\":\"D. Clavel, C. Mahulea, J. Albareda, M. Suárez\",\"doi\":\"10.1109/ETFA.2017.8247620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the scheduling problem of elective patients in the Orthopedic Department of the “Lozano Blesa” Hospital in Zaragoza is considered. This problem takes into account two contradictory objectives: obtain a given occupation rate of the Operation Room (OR) and respect as much as possible the preference order of the patients in the waiting list. Three different mathematical models are discussed: 1) Quadratic Assignment Problem (QAP); 2) a Mixed Integer Linear Programing (MILP) model; and 3) Generalized Assignment Problem (GAP). These models solve combinatorial problems with a high computational cost; for this reason, heuristic methods have been used to solve large instances. In particular, 1) a meta-heuristic Genetic Algorithm (GA) for the QAP; 2) a heuristic Steepest Descent Multiplier Adjustment Method (SDMAM) for the GAP; and 3) a heuristic iterative method for MILP. Finally, the models and the heuristics are compared according to the occupation rate and the preference order criteria.\",\"PeriodicalId\":6522,\"journal\":{\"name\":\"2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"volume\":\"1 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2017.8247620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2017.8247620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了萨拉戈萨市“Lozano Blesa”医院骨科择期病人的调度问题。该问题考虑了两个相互矛盾的目标:获得给定的手术室占用率和尽可能尊重候诊名单中患者的优先顺序。讨论了三种不同的数学模型:1)二次分配问题(QAP);混合整数线性规划(MILP)模型;3)广义分配问题(GAP)。这些模型解决了计算成本高的组合问题;由于这个原因,启发式方法被用于解决大型实例。具体而言,1)QAP的元启发式遗传算法(GA);2) GAP的启发式最陡下降乘数调整方法(SDMAM);3) MILP的启发式迭代方法。最后,根据占用率和偏好顺序标准对模型和启发式算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards efficient algorithms for planning surgeries in operation rooms
In this paper, the scheduling problem of elective patients in the Orthopedic Department of the “Lozano Blesa” Hospital in Zaragoza is considered. This problem takes into account two contradictory objectives: obtain a given occupation rate of the Operation Room (OR) and respect as much as possible the preference order of the patients in the waiting list. Three different mathematical models are discussed: 1) Quadratic Assignment Problem (QAP); 2) a Mixed Integer Linear Programing (MILP) model; and 3) Generalized Assignment Problem (GAP). These models solve combinatorial problems with a high computational cost; for this reason, heuristic methods have been used to solve large instances. In particular, 1) a meta-heuristic Genetic Algorithm (GA) for the QAP; 2) a heuristic Steepest Descent Multiplier Adjustment Method (SDMAM) for the GAP; and 3) a heuristic iterative method for MILP. Finally, the models and the heuristics are compared according to the occupation rate and the preference order criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Practical and Formal Security Risk Analysis of IoT (Internet of Things) Applications Modeling Misbehavior Detection Timeliness in VANETs Embedding Anomaly Detection Autoencoders for Wind Turbines The Beremiz PLC: Adding Support for Industrial Communication Protocols Using code generated by MATLAB for the Mold Level Control System of a Continuous Slab Caster in ArcelorMittal Gent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1