介电转子异常力的表征

E. Porcelli, V. S. Filho
{"title":"介电转子异常力的表征","authors":"E. Porcelli, V. S. Filho","doi":"10.1139/CJP-2020-0570","DOIUrl":null,"url":null,"abstract":"We performed several measurements of anomalous forces on a dielectric rotor in operation, subjected to high voltage. The device operated under constant and intense angular velocity for each high voltage applied. The measurements were made in the similar way than an analogue magnetic gyroscope, by considering clockwise and counterclockwise rotations. We found that there are significant weight reduction on the device in the clockwise case, with one order of magnitude higher than the magnetic case. In addition, we detected a similar asymmetry in the observation of the effect, that is, there are smaller results for the anomalous forces in counterclockwise rotation. We also propose a theoretical model to explain the quantitative effect based on average values of macroscopic observables of the device rotation and concluded that it is consistent with the experimental results.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Anomalous Forces in Dielectric Rotors\",\"authors\":\"E. Porcelli, V. S. Filho\",\"doi\":\"10.1139/CJP-2020-0570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We performed several measurements of anomalous forces on a dielectric rotor in operation, subjected to high voltage. The device operated under constant and intense angular velocity for each high voltage applied. The measurements were made in the similar way than an analogue magnetic gyroscope, by considering clockwise and counterclockwise rotations. We found that there are significant weight reduction on the device in the clockwise case, with one order of magnitude higher than the magnetic case. In addition, we detected a similar asymmetry in the observation of the effect, that is, there are smaller results for the anomalous forces in counterclockwise rotation. We also propose a theoretical model to explain the quantitative effect based on average values of macroscopic observables of the device rotation and concluded that it is consistent with the experimental results.\",\"PeriodicalId\":8423,\"journal\":{\"name\":\"arXiv: Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/CJP-2020-0570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/CJP-2020-0570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在高压下,我们对电介质转子的异常力进行了几次测量。每次施加高电压时,该装置都在恒定而强烈的角速度下工作。通过考虑顺时针和逆时针旋转,测量方法与模拟磁陀螺仪相似。我们发现,顺时针表壳下的设备重量明显减轻,比磁性表壳高一个数量级。此外,我们在对效应的观察中发现了类似的不对称性,即逆时针旋转的异常力的结果较小。我们还提出了一个基于器件旋转宏观观测值平均值的理论模型来解释定量效应,并得出了与实验结果一致的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of Anomalous Forces in Dielectric Rotors
We performed several measurements of anomalous forces on a dielectric rotor in operation, subjected to high voltage. The device operated under constant and intense angular velocity for each high voltage applied. The measurements were made in the similar way than an analogue magnetic gyroscope, by considering clockwise and counterclockwise rotations. We found that there are significant weight reduction on the device in the clockwise case, with one order of magnitude higher than the magnetic case. In addition, we detected a similar asymmetry in the observation of the effect, that is, there are smaller results for the anomalous forces in counterclockwise rotation. We also propose a theoretical model to explain the quantitative effect based on average values of macroscopic observables of the device rotation and concluded that it is consistent with the experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High performance photonic microwave filters based on a 50GHz FSR optical soliton crystal Kerr micro-comb Ultra-high bandwidth fiber-optic data transmission with a single chip source High order pulse-echo (HOPE) ultrasound Data-driven modelling of scalable spinodoid structures for energy absorption Radioplasmonics: design of plasmonic milli-particles in air and absorbing media for antenna communication and human-body in-vivo applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1