{"title":"利用智能完井和零燃烧技术进行井筒清理","authors":"M. Alkhalifah, Rabih Younes","doi":"10.2118/206246-ms","DOIUrl":null,"url":null,"abstract":"\n In an oil field, openhole multilateral maximum reservoir contact (MRC) wells are drilled. These wells are typically equipped with smart well completion technologies consisting of inflow control valves and permanent downhole monitoring systems. Conventional flowback techniques consisted of flowing back the well to atmosphere while burning the hydrocarbon and drilling fluids brought to surface. In an age of economic, environmental and safety consciousness, all practices in the petroleum industry are being examined closely. As such, the conventional method of flowing back wells is frowned upon from all aspects. This gives rise to the challenge of flowing back wells in an economic manner without compromising safety and the environment; all the while ensuring excellent well deliverability.\n By utilizing subsurface smart well completion inflow control valves, individual laterals are flowed to a separator system whereby solid drill cuttings are captured and discharged using a solids management system. Hydrocarbons are separated using a separation vessel and measured before being sent to the production line toward the field separation facility. Permanent downhole monitoring systems are used to monitor pressure drawdown and subsequently control the rate of flow to surface to ensure reservoir integrity. Following the completion of the solids and drilling fluid flowback from the wellbore, comprehensive multi-rate measurements at different choke settings are obtained to quantify the well performance.\n This paper looks at the economic and environmental improvements of the adopted zero flaring cleanup technology and smart well completions flowback techniques in comparison to conventional flowback methods. This ensures that oil is being recovered during well flowback and lateral contribution to overall flow in multilateral wells. In addition, it highlights the lessons learned and key best practices implemented during the cleanup operation to complete the job in a safe and efficient manner.\n This technique tends to set a roadmap for a better well flowback that fulfills economic constrains and protects the environment.","PeriodicalId":10928,"journal":{"name":"Day 2 Wed, September 22, 2021","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well Cleanup Utilizing Smart Well Completion and Zero Flaring Technology\",\"authors\":\"M. Alkhalifah, Rabih Younes\",\"doi\":\"10.2118/206246-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In an oil field, openhole multilateral maximum reservoir contact (MRC) wells are drilled. These wells are typically equipped with smart well completion technologies consisting of inflow control valves and permanent downhole monitoring systems. Conventional flowback techniques consisted of flowing back the well to atmosphere while burning the hydrocarbon and drilling fluids brought to surface. In an age of economic, environmental and safety consciousness, all practices in the petroleum industry are being examined closely. As such, the conventional method of flowing back wells is frowned upon from all aspects. This gives rise to the challenge of flowing back wells in an economic manner without compromising safety and the environment; all the while ensuring excellent well deliverability.\\n By utilizing subsurface smart well completion inflow control valves, individual laterals are flowed to a separator system whereby solid drill cuttings are captured and discharged using a solids management system. Hydrocarbons are separated using a separation vessel and measured before being sent to the production line toward the field separation facility. Permanent downhole monitoring systems are used to monitor pressure drawdown and subsequently control the rate of flow to surface to ensure reservoir integrity. Following the completion of the solids and drilling fluid flowback from the wellbore, comprehensive multi-rate measurements at different choke settings are obtained to quantify the well performance.\\n This paper looks at the economic and environmental improvements of the adopted zero flaring cleanup technology and smart well completions flowback techniques in comparison to conventional flowback methods. This ensures that oil is being recovered during well flowback and lateral contribution to overall flow in multilateral wells. In addition, it highlights the lessons learned and key best practices implemented during the cleanup operation to complete the job in a safe and efficient manner.\\n This technique tends to set a roadmap for a better well flowback that fulfills economic constrains and protects the environment.\",\"PeriodicalId\":10928,\"journal\":{\"name\":\"Day 2 Wed, September 22, 2021\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, September 22, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/206246-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, September 22, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206246-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Well Cleanup Utilizing Smart Well Completion and Zero Flaring Technology
In an oil field, openhole multilateral maximum reservoir contact (MRC) wells are drilled. These wells are typically equipped with smart well completion technologies consisting of inflow control valves and permanent downhole monitoring systems. Conventional flowback techniques consisted of flowing back the well to atmosphere while burning the hydrocarbon and drilling fluids brought to surface. In an age of economic, environmental and safety consciousness, all practices in the petroleum industry are being examined closely. As such, the conventional method of flowing back wells is frowned upon from all aspects. This gives rise to the challenge of flowing back wells in an economic manner without compromising safety and the environment; all the while ensuring excellent well deliverability.
By utilizing subsurface smart well completion inflow control valves, individual laterals are flowed to a separator system whereby solid drill cuttings are captured and discharged using a solids management system. Hydrocarbons are separated using a separation vessel and measured before being sent to the production line toward the field separation facility. Permanent downhole monitoring systems are used to monitor pressure drawdown and subsequently control the rate of flow to surface to ensure reservoir integrity. Following the completion of the solids and drilling fluid flowback from the wellbore, comprehensive multi-rate measurements at different choke settings are obtained to quantify the well performance.
This paper looks at the economic and environmental improvements of the adopted zero flaring cleanup technology and smart well completions flowback techniques in comparison to conventional flowback methods. This ensures that oil is being recovered during well flowback and lateral contribution to overall flow in multilateral wells. In addition, it highlights the lessons learned and key best practices implemented during the cleanup operation to complete the job in a safe and efficient manner.
This technique tends to set a roadmap for a better well flowback that fulfills economic constrains and protects the environment.