{"title":"通过网络监测的协同抽样检测Wifi网络中的不良行为节点","authors":"M. Shanthi, S. Suresh","doi":"10.1109/ICICES.2014.7033760","DOIUrl":null,"url":null,"abstract":"We present an approach to detect a selfish node in a wireless network by passive monitoring. This does not require any access to the network nodes. Our approach requires deploying multiple sniffers across the network to capture wireless traffic traces among multiple channels. IEEE 802.11 networks support multiple channels, and a wireless interface can monitor only a single channel at one time. Thus, capturing all frames passing an interface on all channels is an impossible task, and we need strategies to capture the most representative sample. When a large area is to be monitored, several sniffers must be deployed, and these will typically overlap in their area of coverage. The goals of effective wireless monitoring are to capture as many frames as possible, while minimizing the number of those frames that are captured redundantly by more than one sniffer. The above goals May be addressed with a coordinated sampling strategy that directs neighboring sniffer to different channels during any period. These traces are then analyzed using hidden markov model to infer the misbehavior node in wifi networks.","PeriodicalId":13713,"journal":{"name":"International Conference on Information Communication and Embedded Systems (ICICES2014)","volume":"27 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detecting misbehavior node in Wifi networks by co-ordinated sampling of network monitoring\",\"authors\":\"M. Shanthi, S. Suresh\",\"doi\":\"10.1109/ICICES.2014.7033760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an approach to detect a selfish node in a wireless network by passive monitoring. This does not require any access to the network nodes. Our approach requires deploying multiple sniffers across the network to capture wireless traffic traces among multiple channels. IEEE 802.11 networks support multiple channels, and a wireless interface can monitor only a single channel at one time. Thus, capturing all frames passing an interface on all channels is an impossible task, and we need strategies to capture the most representative sample. When a large area is to be monitored, several sniffers must be deployed, and these will typically overlap in their area of coverage. The goals of effective wireless monitoring are to capture as many frames as possible, while minimizing the number of those frames that are captured redundantly by more than one sniffer. The above goals May be addressed with a coordinated sampling strategy that directs neighboring sniffer to different channels during any period. These traces are then analyzed using hidden markov model to infer the misbehavior node in wifi networks.\",\"PeriodicalId\":13713,\"journal\":{\"name\":\"International Conference on Information Communication and Embedded Systems (ICICES2014)\",\"volume\":\"27 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Information Communication and Embedded Systems (ICICES2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICES.2014.7033760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Communication and Embedded Systems (ICICES2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICES.2014.7033760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detecting misbehavior node in Wifi networks by co-ordinated sampling of network monitoring
We present an approach to detect a selfish node in a wireless network by passive monitoring. This does not require any access to the network nodes. Our approach requires deploying multiple sniffers across the network to capture wireless traffic traces among multiple channels. IEEE 802.11 networks support multiple channels, and a wireless interface can monitor only a single channel at one time. Thus, capturing all frames passing an interface on all channels is an impossible task, and we need strategies to capture the most representative sample. When a large area is to be monitored, several sniffers must be deployed, and these will typically overlap in their area of coverage. The goals of effective wireless monitoring are to capture as many frames as possible, while minimizing the number of those frames that are captured redundantly by more than one sniffer. The above goals May be addressed with a coordinated sampling strategy that directs neighboring sniffer to different channels during any period. These traces are then analyzed using hidden markov model to infer the misbehavior node in wifi networks.