{"title":"简洁直方图的本地、私有、高效协议","authors":"Raef Bassily, Adam D. Smith","doi":"10.1145/2746539.2746632","DOIUrl":null,"url":null,"abstract":"We give efficient protocols and matching accuracy lower bounds for frequency estimation in the local model for differential privacy. In this model, individual users randomize their data themselves, sending differentially private reports to an untrusted server that aggregates them. We study protocols that produce a succinct histogram representation of the data. A succinct histogram is a list of the most frequent items in the data (often called \"heavy hitters\") along with estimates of their frequencies; the frequency of all other items is implicitly estimated as 0. If there are n users whose items come from a universe of size d, our protocols run in time polynomial in n and log(d). With high probability, they estimate the accuracy of every item up to error O(√{log(d)/(ε2n)}). Moreover, we show that this much error is necessary, regardless of computational efficiency, and even for the simple setting where only one item appears with significant frequency in the data set. Previous protocols (Mishra and Sandler, 2006; Hsu, Khanna and Roth, 2012) for this task either ran in time Ω(d) or had much worse error (about √[6]{log(d)/(ε2n)}), and the only known lower bound on error was Ω(1/√{n}). We also adapt a result of McGregor et al (2010) to the local setting. In a model with public coins, we show that each user need only send 1 bit to the server. For all known local protocols (including ours), the transformation preserves computational efficiency.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"373","resultStr":"{\"title\":\"Local, Private, Efficient Protocols for Succinct Histograms\",\"authors\":\"Raef Bassily, Adam D. Smith\",\"doi\":\"10.1145/2746539.2746632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give efficient protocols and matching accuracy lower bounds for frequency estimation in the local model for differential privacy. In this model, individual users randomize their data themselves, sending differentially private reports to an untrusted server that aggregates them. We study protocols that produce a succinct histogram representation of the data. A succinct histogram is a list of the most frequent items in the data (often called \\\"heavy hitters\\\") along with estimates of their frequencies; the frequency of all other items is implicitly estimated as 0. If there are n users whose items come from a universe of size d, our protocols run in time polynomial in n and log(d). With high probability, they estimate the accuracy of every item up to error O(√{log(d)/(ε2n)}). Moreover, we show that this much error is necessary, regardless of computational efficiency, and even for the simple setting where only one item appears with significant frequency in the data set. Previous protocols (Mishra and Sandler, 2006; Hsu, Khanna and Roth, 2012) for this task either ran in time Ω(d) or had much worse error (about √[6]{log(d)/(ε2n)}), and the only known lower bound on error was Ω(1/√{n}). We also adapt a result of McGregor et al (2010) to the local setting. In a model with public coins, we show that each user need only send 1 bit to the server. For all known local protocols (including ours), the transformation preserves computational efficiency.\",\"PeriodicalId\":20566,\"journal\":{\"name\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"373\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2746539.2746632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Local, Private, Efficient Protocols for Succinct Histograms
We give efficient protocols and matching accuracy lower bounds for frequency estimation in the local model for differential privacy. In this model, individual users randomize their data themselves, sending differentially private reports to an untrusted server that aggregates them. We study protocols that produce a succinct histogram representation of the data. A succinct histogram is a list of the most frequent items in the data (often called "heavy hitters") along with estimates of their frequencies; the frequency of all other items is implicitly estimated as 0. If there are n users whose items come from a universe of size d, our protocols run in time polynomial in n and log(d). With high probability, they estimate the accuracy of every item up to error O(√{log(d)/(ε2n)}). Moreover, we show that this much error is necessary, regardless of computational efficiency, and even for the simple setting where only one item appears with significant frequency in the data set. Previous protocols (Mishra and Sandler, 2006; Hsu, Khanna and Roth, 2012) for this task either ran in time Ω(d) or had much worse error (about √[6]{log(d)/(ε2n)}), and the only known lower bound on error was Ω(1/√{n}). We also adapt a result of McGregor et al (2010) to the local setting. In a model with public coins, we show that each user need only send 1 bit to the server. For all known local protocols (including ours), the transformation preserves computational efficiency.