Zhe Song, Yan Zhang, Xing Mu, Houxing Zhou, W. Hong
{"title":"基于矩量法的天线毫米波准周期结构全波分析及其在GPU/CPU平台上的共轭梯度解","authors":"Zhe Song, Yan Zhang, Xing Mu, Houxing Zhou, W. Hong","doi":"10.1109/COMPEM.2015.7052548","DOIUrl":null,"url":null,"abstract":"In this paper, an accurate and efficient full wave analysis for millimeter wave quasi-periodical structure for antenna applications is realized. By extracting all the surface wave poles of the spectral domain multilayered Green's functions, the discrete complex image method (DCIM) can be adopted to fast evaluate their counter parts in spatial domain, and the mixed potential integral equation (MPIE) for method of moments (MoM) can be constructed. With the Jerusalem cross as a patch element on a dielectric layer, a quasi-periodical structure can be organized as the geometries gradually varied. By illuminate this kind of structure with an incident plane wave, the distribution of electric current on the metal surface can be obtained by solving the MoM equation and the forward scattering cross section can be fast calculated by the conjugate gradient (CG) algorithm written in CUDA and realized in NVIDIA graphic process unit (GPU). A layered structure with a 17×17 Jerusalem crosses at 30GHz was calculated and very good agreements have been found between the proposed method and commercial EM simulator (CST), while an improvement on efficiency is realized.","PeriodicalId":6530,"journal":{"name":"2015 IEEE International Conference on Computational Electromagnetics","volume":"24 1","pages":"41-42"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Full wave analysis of millimeter wave quasi-periodical structure for antenna applications by method of moments and its conjugate gradient solution on GPU/CPU platform\",\"authors\":\"Zhe Song, Yan Zhang, Xing Mu, Houxing Zhou, W. Hong\",\"doi\":\"10.1109/COMPEM.2015.7052548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an accurate and efficient full wave analysis for millimeter wave quasi-periodical structure for antenna applications is realized. By extracting all the surface wave poles of the spectral domain multilayered Green's functions, the discrete complex image method (DCIM) can be adopted to fast evaluate their counter parts in spatial domain, and the mixed potential integral equation (MPIE) for method of moments (MoM) can be constructed. With the Jerusalem cross as a patch element on a dielectric layer, a quasi-periodical structure can be organized as the geometries gradually varied. By illuminate this kind of structure with an incident plane wave, the distribution of electric current on the metal surface can be obtained by solving the MoM equation and the forward scattering cross section can be fast calculated by the conjugate gradient (CG) algorithm written in CUDA and realized in NVIDIA graphic process unit (GPU). A layered structure with a 17×17 Jerusalem crosses at 30GHz was calculated and very good agreements have been found between the proposed method and commercial EM simulator (CST), while an improvement on efficiency is realized.\",\"PeriodicalId\":6530,\"journal\":{\"name\":\"2015 IEEE International Conference on Computational Electromagnetics\",\"volume\":\"24 1\",\"pages\":\"41-42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computational Electromagnetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPEM.2015.7052548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computational Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2015.7052548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Full wave analysis of millimeter wave quasi-periodical structure for antenna applications by method of moments and its conjugate gradient solution on GPU/CPU platform
In this paper, an accurate and efficient full wave analysis for millimeter wave quasi-periodical structure for antenna applications is realized. By extracting all the surface wave poles of the spectral domain multilayered Green's functions, the discrete complex image method (DCIM) can be adopted to fast evaluate their counter parts in spatial domain, and the mixed potential integral equation (MPIE) for method of moments (MoM) can be constructed. With the Jerusalem cross as a patch element on a dielectric layer, a quasi-periodical structure can be organized as the geometries gradually varied. By illuminate this kind of structure with an incident plane wave, the distribution of electric current on the metal surface can be obtained by solving the MoM equation and the forward scattering cross section can be fast calculated by the conjugate gradient (CG) algorithm written in CUDA and realized in NVIDIA graphic process unit (GPU). A layered structure with a 17×17 Jerusalem crosses at 30GHz was calculated and very good agreements have been found between the proposed method and commercial EM simulator (CST), while an improvement on efficiency is realized.