DaDianNao:机器学习超级计算机

Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, O. Temam
{"title":"DaDianNao:机器学习超级计算机","authors":"Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, O. Temam","doi":"10.1109/MICRO.2014.58","DOIUrl":null,"url":null,"abstract":"Many companies are deploying services, either for consumers or industry, which are largely based on machine-learning algorithms for sophisticated processing of large amounts of data. The state-of-the-art and most popular such machine-learning algorithms are Convolutional and Deep Neural Networks (CNNs and DNNs), which are known to be both computationally and memory intensive. A number of neural network accelerators have been recently proposed which can offer high computational capacity/area ratio, but which remain hampered by memory accesses. However, unlike the memory wall faced by processors on general-purpose workloads, the CNNs and DNNs memory footprint, while large, is not beyond the capability of the on chip storage of a multi-chip system. This property, combined with the CNN/DNN algorithmic characteristics, can lead to high internal bandwidth and low external communications, which can in turn enable high-degree parallelism at a reasonable area cost. In this article, we introduce a custom multi-chip machine-learning architecture along those lines. We show that, on a subset of the largest known neural network layers, it is possible to achieve a speedup of 450.65x over a GPU, and reduce the energy by 150.31x on average for a 64-chip system. We implement the node down to the place and route at 28nm, containing a combination of custom storage and computational units, with industry-grade interconnects.","PeriodicalId":6591,"journal":{"name":"2014 47th Annual IEEE/ACM International Symposium on Microarchitecture","volume":"21 1","pages":"609-622"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1256","resultStr":"{\"title\":\"DaDianNao: A Machine-Learning Supercomputer\",\"authors\":\"Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, O. Temam\",\"doi\":\"10.1109/MICRO.2014.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many companies are deploying services, either for consumers or industry, which are largely based on machine-learning algorithms for sophisticated processing of large amounts of data. The state-of-the-art and most popular such machine-learning algorithms are Convolutional and Deep Neural Networks (CNNs and DNNs), which are known to be both computationally and memory intensive. A number of neural network accelerators have been recently proposed which can offer high computational capacity/area ratio, but which remain hampered by memory accesses. However, unlike the memory wall faced by processors on general-purpose workloads, the CNNs and DNNs memory footprint, while large, is not beyond the capability of the on chip storage of a multi-chip system. This property, combined with the CNN/DNN algorithmic characteristics, can lead to high internal bandwidth and low external communications, which can in turn enable high-degree parallelism at a reasonable area cost. In this article, we introduce a custom multi-chip machine-learning architecture along those lines. We show that, on a subset of the largest known neural network layers, it is possible to achieve a speedup of 450.65x over a GPU, and reduce the energy by 150.31x on average for a 64-chip system. We implement the node down to the place and route at 28nm, containing a combination of custom storage and computational units, with industry-grade interconnects.\",\"PeriodicalId\":6591,\"journal\":{\"name\":\"2014 47th Annual IEEE/ACM International Symposium on Microarchitecture\",\"volume\":\"21 1\",\"pages\":\"609-622\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1256\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 47th Annual IEEE/ACM International Symposium on Microarchitecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICRO.2014.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 47th Annual IEEE/ACM International Symposium on Microarchitecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICRO.2014.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1256

摘要

许多公司正在部署面向消费者或行业的服务,这些服务主要基于机器学习算法,用于对大量数据进行复杂处理。最先进和最流行的机器学习算法是卷积神经网络和深度神经网络(cnn和dnn),它们被认为是计算和内存密集型的。近年来,人们提出了许多神经网络加速器,它们可以提供较高的计算容量/面积比,但仍然受到内存访问的限制。然而,与处理器在通用工作负载上面临的内存墙不同,cnn和dnn的内存占用虽然很大,但不会超出多芯片系统的片上存储能力。该特性与CNN/DNN算法特性相结合,可以实现高内部带宽和低外部通信,从而以合理的面积成本实现高度并行。在本文中,我们将介绍一种定制的多芯片机器学习架构。我们表明,在已知最大的神经网络层的一个子集上,可以实现比GPU更快450.65倍的加速,并且在64芯片系统中平均减少150.31倍的能量。我们在28nm的位置和路由上实现节点,包含定制存储和计算单元的组合,具有工业级互连。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DaDianNao: A Machine-Learning Supercomputer
Many companies are deploying services, either for consumers or industry, which are largely based on machine-learning algorithms for sophisticated processing of large amounts of data. The state-of-the-art and most popular such machine-learning algorithms are Convolutional and Deep Neural Networks (CNNs and DNNs), which are known to be both computationally and memory intensive. A number of neural network accelerators have been recently proposed which can offer high computational capacity/area ratio, but which remain hampered by memory accesses. However, unlike the memory wall faced by processors on general-purpose workloads, the CNNs and DNNs memory footprint, while large, is not beyond the capability of the on chip storage of a multi-chip system. This property, combined with the CNN/DNN algorithmic characteristics, can lead to high internal bandwidth and low external communications, which can in turn enable high-degree parallelism at a reasonable area cost. In this article, we introduce a custom multi-chip machine-learning architecture along those lines. We show that, on a subset of the largest known neural network layers, it is possible to achieve a speedup of 450.65x over a GPU, and reduce the energy by 150.31x on average for a 64-chip system. We implement the node down to the place and route at 28nm, containing a combination of custom storage and computational units, with industry-grade interconnects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Specializing Compiler Optimizations through Programmable Composition for Dense Matrix Computations Efficient Memory Virtualization: Reducing Dimensionality of Nested Page Walks SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in Warehouse Scale Computers Equalizer: Dynamic Tuning of GPU Resources for Efficient Execution Harnessing Soft Computations for Low-Budget Fault Tolerance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1