实时语义分割的双流分割网络

Changyuan Zhong, Zelin Hu, Miao Li, Hualong Li, Xuanjiang Yang, Fei Liu
{"title":"实时语义分割的双流分割网络","authors":"Changyuan Zhong, Zelin Hu, Miao Li, Hualong Li, Xuanjiang Yang, Fei Liu","doi":"10.1109/ICIVC50857.2020.9177439","DOIUrl":null,"url":null,"abstract":"Modern real-time segmentation methods employ two-branch framework to achieve good speed and accuracy trade-off. However, we observe that low-level features coming from the shallow layers go through less processing, producing a potential semantic gap between different levels of features. Meanwhile, a rigid fusion is less effective due to the absence of consideration for two-branch framework characteristics. In this paper, we propose two novel modules: Unified Interplay Module and Separate Pyramid Pooling Module to address those two issues respectively. Based on our proposed modules, we present a novel Dual Stream Segmentation Network (DSSNet), a two-branch framework for real-time semantic segmentation. Compared with BiSeNet, our DSSNet based on ResNet18 achieves better performance 76.45% mIoU on the Cityscapes test dataset while sharing similar computation costs with BiSeNet. Furthermore, our DSSNet with ResNet34 backbone outperforms previous real-time models, achieving 78.5% mIoU on the Cityscapes test dataset with speed of 39 FPS on GTX1080Ti.","PeriodicalId":6806,"journal":{"name":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","volume":"46 1","pages":"144-149"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dual Stream Segmentation Network for Real-Time Semantic Segmentation\",\"authors\":\"Changyuan Zhong, Zelin Hu, Miao Li, Hualong Li, Xuanjiang Yang, Fei Liu\",\"doi\":\"10.1109/ICIVC50857.2020.9177439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern real-time segmentation methods employ two-branch framework to achieve good speed and accuracy trade-off. However, we observe that low-level features coming from the shallow layers go through less processing, producing a potential semantic gap between different levels of features. Meanwhile, a rigid fusion is less effective due to the absence of consideration for two-branch framework characteristics. In this paper, we propose two novel modules: Unified Interplay Module and Separate Pyramid Pooling Module to address those two issues respectively. Based on our proposed modules, we present a novel Dual Stream Segmentation Network (DSSNet), a two-branch framework for real-time semantic segmentation. Compared with BiSeNet, our DSSNet based on ResNet18 achieves better performance 76.45% mIoU on the Cityscapes test dataset while sharing similar computation costs with BiSeNet. Furthermore, our DSSNet with ResNet34 backbone outperforms previous real-time models, achieving 78.5% mIoU on the Cityscapes test dataset with speed of 39 FPS on GTX1080Ti.\",\"PeriodicalId\":6806,\"journal\":{\"name\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"volume\":\"46 1\",\"pages\":\"144-149\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIVC50857.2020.9177439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC50857.2020.9177439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现代实时分割方法采用双分支框架,以达到较好的速度和精度平衡。然而,我们观察到来自浅层的低级特征经过较少的处理,从而在不同级别的特征之间产生潜在的语义差距。同时,由于没有考虑两分支框架的特征,刚性融合的效果较差。本文提出了统一交互模块和分离金字塔池模块来解决这两个问题。基于我们提出的模块,我们提出了一个新的双流分割网络(DSSNet),一个实时语义分割的双分支框架。与BiSeNet相比,我们基于ResNet18的DSSNet在cityscape测试数据集上的性能达到76.45% mIoU,计算成本与BiSeNet相近。此外,我们采用ResNet34骨干网的DSSNet优于以前的实时模型,在GTX1080Ti上以39 FPS的速度在cityscape测试数据集上实现了78.5%的mIoU。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual Stream Segmentation Network for Real-Time Semantic Segmentation
Modern real-time segmentation methods employ two-branch framework to achieve good speed and accuracy trade-off. However, we observe that low-level features coming from the shallow layers go through less processing, producing a potential semantic gap between different levels of features. Meanwhile, a rigid fusion is less effective due to the absence of consideration for two-branch framework characteristics. In this paper, we propose two novel modules: Unified Interplay Module and Separate Pyramid Pooling Module to address those two issues respectively. Based on our proposed modules, we present a novel Dual Stream Segmentation Network (DSSNet), a two-branch framework for real-time semantic segmentation. Compared with BiSeNet, our DSSNet based on ResNet18 achieves better performance 76.45% mIoU on the Cityscapes test dataset while sharing similar computation costs with BiSeNet. Furthermore, our DSSNet with ResNet34 backbone outperforms previous real-time models, achieving 78.5% mIoU on the Cityscapes test dataset with speed of 39 FPS on GTX1080Ti.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online Multi-object Tracking with Siamese Network and Optical Flow Research on Product Style Design Based on Genetic Algorithm Super-Resolution Reconstruction Algorithm of Target Image Based on Learning Background Air Quality Inference with Deep Convolutional Conditional Random Field Feature Point Extraction and Matching Method Based on Akaze in Illumination Invariant Color Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1