{"title":"量子气体的研究:光学晶格中的玻色子和一维相互作用玻色气体","authors":"F. T. Sant'Ana","doi":"10.11606/t.76.2020.tde-29062020-150004","DOIUrl":null,"url":null,"abstract":"Bosonic atoms confined in optical lattices are described by the Bose-Hubbard model and can exist in two different phases, Mott insulator or superfluid, depending on the strength of the system parameters. In the vicinity of the phase boundary, there are degeneracies that occur between every two adjacent Mott lobes. Because of this, nondegenerate perturbation theory fails to give meaningful results for the condensate density: it predicts a phase transition in a point of the phase diagram where no transition occurs. Motivated by this, we develop two different degenerate perturbative methods to solve the degeneracy-related problems. Moreover, we study the one-dimensional repulsively interacting Bose gas under harmonic confinement, with special attention to the asymptotic behavior of the momentum distribution, which is a universal $k^{-4}$ decay characterized by the Tan's contact. The latter constitutes a direct signature of the short-range correlations in such an interacting system and provides valuable insights about the role of the interparticle interactions. We investigate the system constituted of $N$ interacting particles in the strongly interacting limit. In such a regime, the strong interparticle interaction makes the bosons behave similarly to the ideal Fermi gas. Because of the difficulty in analytically solving the system for $N$ particles at finite interaction, the Tonks-Girardeau regime provides a favorable scenario to probe the contact. Therefore, we are able to provide an analytical formula for the Tan's contact. Furthermore, we analyze the scaling properties of the Tan's contact in terms of $N$ in the high-temperature regime as well as in the strongly interacting regime. Finally, we compare our analytical calculations of the Tan's contact to quantum Monte Carlo simulations and discuss some fundamental differences between the canonical and the grand-canonical ensembles.","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on quantum gases: bosons in optical lattices and the one-dimensional interacting Bose gas\",\"authors\":\"F. T. Sant'Ana\",\"doi\":\"10.11606/t.76.2020.tde-29062020-150004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bosonic atoms confined in optical lattices are described by the Bose-Hubbard model and can exist in two different phases, Mott insulator or superfluid, depending on the strength of the system parameters. In the vicinity of the phase boundary, there are degeneracies that occur between every two adjacent Mott lobes. Because of this, nondegenerate perturbation theory fails to give meaningful results for the condensate density: it predicts a phase transition in a point of the phase diagram where no transition occurs. Motivated by this, we develop two different degenerate perturbative methods to solve the degeneracy-related problems. Moreover, we study the one-dimensional repulsively interacting Bose gas under harmonic confinement, with special attention to the asymptotic behavior of the momentum distribution, which is a universal $k^{-4}$ decay characterized by the Tan's contact. The latter constitutes a direct signature of the short-range correlations in such an interacting system and provides valuable insights about the role of the interparticle interactions. We investigate the system constituted of $N$ interacting particles in the strongly interacting limit. In such a regime, the strong interparticle interaction makes the bosons behave similarly to the ideal Fermi gas. Because of the difficulty in analytically solving the system for $N$ particles at finite interaction, the Tonks-Girardeau regime provides a favorable scenario to probe the contact. Therefore, we are able to provide an analytical formula for the Tan's contact. Furthermore, we analyze the scaling properties of the Tan's contact in terms of $N$ in the high-temperature regime as well as in the strongly interacting regime. Finally, we compare our analytical calculations of the Tan's contact to quantum Monte Carlo simulations and discuss some fundamental differences between the canonical and the grand-canonical ensembles.\",\"PeriodicalId\":8838,\"journal\":{\"name\":\"arXiv: Quantum Gases\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Gases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11606/t.76.2020.tde-29062020-150004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11606/t.76.2020.tde-29062020-150004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A study on quantum gases: bosons in optical lattices and the one-dimensional interacting Bose gas
Bosonic atoms confined in optical lattices are described by the Bose-Hubbard model and can exist in two different phases, Mott insulator or superfluid, depending on the strength of the system parameters. In the vicinity of the phase boundary, there are degeneracies that occur between every two adjacent Mott lobes. Because of this, nondegenerate perturbation theory fails to give meaningful results for the condensate density: it predicts a phase transition in a point of the phase diagram where no transition occurs. Motivated by this, we develop two different degenerate perturbative methods to solve the degeneracy-related problems. Moreover, we study the one-dimensional repulsively interacting Bose gas under harmonic confinement, with special attention to the asymptotic behavior of the momentum distribution, which is a universal $k^{-4}$ decay characterized by the Tan's contact. The latter constitutes a direct signature of the short-range correlations in such an interacting system and provides valuable insights about the role of the interparticle interactions. We investigate the system constituted of $N$ interacting particles in the strongly interacting limit. In such a regime, the strong interparticle interaction makes the bosons behave similarly to the ideal Fermi gas. Because of the difficulty in analytically solving the system for $N$ particles at finite interaction, the Tonks-Girardeau regime provides a favorable scenario to probe the contact. Therefore, we are able to provide an analytical formula for the Tan's contact. Furthermore, we analyze the scaling properties of the Tan's contact in terms of $N$ in the high-temperature regime as well as in the strongly interacting regime. Finally, we compare our analytical calculations of the Tan's contact to quantum Monte Carlo simulations and discuss some fundamental differences between the canonical and the grand-canonical ensembles.