血管内超声三维重建血管血管模拟模型

D. Maresca, M. Emmer, Geert Springeling, F. Mastik, G. van Soest, N. de Jong, A. V. D. van der Steen
{"title":"血管内超声三维重建血管血管模拟模型","authors":"D. Maresca, M. Emmer, Geert Springeling, F. Mastik, G. van Soest, N. de Jong, A. V. D. van der Steen","doi":"10.1109/ULTSYM.2010.5935756","DOIUrl":null,"url":null,"abstract":"It is increasingly recognized that the development of new microvessels (vasa vasorum) within and surrounding atherosclerotic plaques is essential to enable artery lesion growth and plays a central role in rendering it vulnerable to rupture. Currently, there is no established clinical technique capable of imaging the vasa vasorum (VV) in the coronary arteries of humans. It has been shown that contrast-enhanced intravascular ultrasound (CE-IVUS) is capable of imaging VV in vivo. This study aims at reconstructing in three dimensions (3D) a VV model using CE-IVUS with a clinical coronary imaging catheter. A polyvinyl alcohol based VV model was manufactured, exhibiting a VV mimicking branch pattern with a diameter ranging from 200 to 100 um. After perfusion of the VV model with the ultrasound contrast agent Definity®, a manual pullback consisting of 93 cross sectional IVUS images spaced every 200 µm was performed. Perfused areas were segmented in two registered CE-IVUS planes and compared to coregistered 10 um thick slices of the VV model. The VV mimicking microchannel diameters measured with CE-IVUS agreed within 30% with the slice diameters. As CE-IVUS imaging can be carried out in-vivo, this method could be used during clinical IVUS investigations as an additional diagnostic for plaque vulnerability.∗","PeriodicalId":6437,"journal":{"name":"2010 IEEE International Ultrasonics Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Contrast-enhanced intravascular ultrasound 3D reconstruction of a vasa vasorum mimicking model\",\"authors\":\"D. Maresca, M. Emmer, Geert Springeling, F. Mastik, G. van Soest, N. de Jong, A. V. D. van der Steen\",\"doi\":\"10.1109/ULTSYM.2010.5935756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is increasingly recognized that the development of new microvessels (vasa vasorum) within and surrounding atherosclerotic plaques is essential to enable artery lesion growth and plays a central role in rendering it vulnerable to rupture. Currently, there is no established clinical technique capable of imaging the vasa vasorum (VV) in the coronary arteries of humans. It has been shown that contrast-enhanced intravascular ultrasound (CE-IVUS) is capable of imaging VV in vivo. This study aims at reconstructing in three dimensions (3D) a VV model using CE-IVUS with a clinical coronary imaging catheter. A polyvinyl alcohol based VV model was manufactured, exhibiting a VV mimicking branch pattern with a diameter ranging from 200 to 100 um. After perfusion of the VV model with the ultrasound contrast agent Definity®, a manual pullback consisting of 93 cross sectional IVUS images spaced every 200 µm was performed. Perfused areas were segmented in two registered CE-IVUS planes and compared to coregistered 10 um thick slices of the VV model. The VV mimicking microchannel diameters measured with CE-IVUS agreed within 30% with the slice diameters. As CE-IVUS imaging can be carried out in-vivo, this method could be used during clinical IVUS investigations as an additional diagnostic for plaque vulnerability.∗\",\"PeriodicalId\":6437,\"journal\":{\"name\":\"2010 IEEE International Ultrasonics Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Ultrasonics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2010.5935756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Ultrasonics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2010.5935756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

越来越多的人认识到,动脉粥样硬化斑块内部和周围的新微血管(血管血管)的发展对于动脉病变的生长是必不可少的,并且在使其容易破裂方面起着核心作用。目前,还没有成熟的临床技术能够成像人类冠状动脉血管(VV)。研究表明,对比增强血管内超声(CE-IVUS)能够在体内成像VV。本研究旨在使用CE-IVUS与临床冠状动脉成像导管在三维(3D)重建VV模型。制备了一种聚乙烯醇基VV模型,其VV模拟了直径在200 ~ 100 μ m之间的分支模式。超声造影剂Definity®灌注VV模型后,进行手动回拉,其中包括93张横截面IVUS图像,间隔为200µm。灌注区域在两个注册CE-IVUS平面上分割,并与共注册的VV模型10 μ m厚切片进行比较。用CE-IVUS测量的模拟微通道直径的VV与薄片直径的一致性在30%以内。由于CE-IVUS成像可以在体内进行,因此该方法可用于临床IVUS调查,作为斑块易感性的附加诊断
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contrast-enhanced intravascular ultrasound 3D reconstruction of a vasa vasorum mimicking model
It is increasingly recognized that the development of new microvessels (vasa vasorum) within and surrounding atherosclerotic plaques is essential to enable artery lesion growth and plays a central role in rendering it vulnerable to rupture. Currently, there is no established clinical technique capable of imaging the vasa vasorum (VV) in the coronary arteries of humans. It has been shown that contrast-enhanced intravascular ultrasound (CE-IVUS) is capable of imaging VV in vivo. This study aims at reconstructing in three dimensions (3D) a VV model using CE-IVUS with a clinical coronary imaging catheter. A polyvinyl alcohol based VV model was manufactured, exhibiting a VV mimicking branch pattern with a diameter ranging from 200 to 100 um. After perfusion of the VV model with the ultrasound contrast agent Definity®, a manual pullback consisting of 93 cross sectional IVUS images spaced every 200 µm was performed. Perfused areas were segmented in two registered CE-IVUS planes and compared to coregistered 10 um thick slices of the VV model. The VV mimicking microchannel diameters measured with CE-IVUS agreed within 30% with the slice diameters. As CE-IVUS imaging can be carried out in-vivo, this method could be used during clinical IVUS investigations as an additional diagnostic for plaque vulnerability.∗
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined use of iteration, quadratic interpolation and an extra kernel for high-resolution 2D particle tracking: A first evaluation Comparing tumor response to VEGF blockade therapy using high frequency ultrasound imaging with size-selected microbubble contrast agents A comparative study of optimal fundamental, second- and superharmonic imaging Evaluation for the distribution of fouling deposition on the microfiltration membrane using high frequency ultrasound A matrix phased array system for 3D high frame-rate imaging of the carotid arteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1