氧和水对注射用亚胺培南西司他汀钠稳定性的影响

Meng Zhang, Chunyu Liu, Xiao-Yan Chen, Li-Na Yang, Chunmei Zhu, Jianhao Teng, Hao Wu, Fu-Li Zhang
{"title":"氧和水对注射用亚胺培南西司他汀钠稳定性的影响","authors":"Meng Zhang, Chunyu Liu, Xiao-Yan Chen, Li-Na Yang, Chunmei Zhu, Jianhao Teng, Hao Wu, Fu-Li Zhang","doi":"10.1055/s-0042-1750043","DOIUrl":null,"url":null,"abstract":"The study aimed to investigate the factors affecting the stability of imipenem and cilastatin sodium for injection (IMI/CIL) to improve the quality and stability in IMI/CIL preparation. In this study, the effects of headspace oxygen (HO), water content, particle shape, and particle size on the stability of IMI/CIL were investigated. IMI/CIL was purged with air, premixed oxygen/nitrogen gas (5%/95%), or high-purity nitrogen (99.999%) at 20, 5, or 2% oxygen levels to prepare IMI/CIL with different HO levels. IMI/CIL was stored at 30, 45, and 75% relative humidity for 30 days to prepare IMI/CIL with different water contents. High-performance liquid chromatography method was used for analysis. The results showed that oxygen, water, particle shape, and particle size had significant effects on the stability of IMI/CIL, and free water content is a better predictor of the safety and stability of imipenem and cilastatin sodium than the total water content. The optimization scheme of the above parameters is proposed, which significantly improves the stability of IMI/CIL. This study led to a better understanding of the degradation mechanism of imipenem and cilastatin sodium, and could provide a reference for the selection and control of IMI/CIL process conditions. This study would contribute to the development of IMI/CIL with improved stability.","PeriodicalId":19767,"journal":{"name":"Pharmaceutical Fronts","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Oxygen and Water on the Stability of Imipenem and Cilastatin Sodium for Injection\",\"authors\":\"Meng Zhang, Chunyu Liu, Xiao-Yan Chen, Li-Na Yang, Chunmei Zhu, Jianhao Teng, Hao Wu, Fu-Li Zhang\",\"doi\":\"10.1055/s-0042-1750043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study aimed to investigate the factors affecting the stability of imipenem and cilastatin sodium for injection (IMI/CIL) to improve the quality and stability in IMI/CIL preparation. In this study, the effects of headspace oxygen (HO), water content, particle shape, and particle size on the stability of IMI/CIL were investigated. IMI/CIL was purged with air, premixed oxygen/nitrogen gas (5%/95%), or high-purity nitrogen (99.999%) at 20, 5, or 2% oxygen levels to prepare IMI/CIL with different HO levels. IMI/CIL was stored at 30, 45, and 75% relative humidity for 30 days to prepare IMI/CIL with different water contents. High-performance liquid chromatography method was used for analysis. The results showed that oxygen, water, particle shape, and particle size had significant effects on the stability of IMI/CIL, and free water content is a better predictor of the safety and stability of imipenem and cilastatin sodium than the total water content. The optimization scheme of the above parameters is proposed, which significantly improves the stability of IMI/CIL. This study led to a better understanding of the degradation mechanism of imipenem and cilastatin sodium, and could provide a reference for the selection and control of IMI/CIL process conditions. This study would contribute to the development of IMI/CIL with improved stability.\",\"PeriodicalId\":19767,\"journal\":{\"name\":\"Pharmaceutical Fronts\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Fronts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0042-1750043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Fronts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0042-1750043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在探讨影响注射用亚胺培南西司他汀钠(IMI/CIL)稳定性的因素,以提高IMI/CIL制剂的质量和稳定性。本研究考察了顶空氧(HO)、水含量、颗粒形状和粒径对IMI/CIL稳定性的影响。IMI/CIL分别用空气、预混氧/氮气(5%/95%)或高纯度氮气(99.999%)在氧气浓度为20%、5%或2%时进行净化,制备不同HO水平的IMI/CIL。将IMI/CIL在相对湿度为30、45和75%的条件下保存30 d,制备不同含水量的IMI/CIL。采用高效液相色谱法进行分析。结果表明,氧、水、颗粒形状和粒径对IMI/CIL的稳定性有显著影响,其中游离水含量比总水含量更能预测亚胺培南西司他汀钠的安全性和稳定性。提出了上述参数的优化方案,显著提高了IMI/CIL的稳定性。本研究有助于进一步了解亚胺培南和西司他汀钠的降解机理,并可为IMI/CIL工艺条件的选择和控制提供参考。本研究将有助于IMI/CIL的发展和稳定性的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Oxygen and Water on the Stability of Imipenem and Cilastatin Sodium for Injection
The study aimed to investigate the factors affecting the stability of imipenem and cilastatin sodium for injection (IMI/CIL) to improve the quality and stability in IMI/CIL preparation. In this study, the effects of headspace oxygen (HO), water content, particle shape, and particle size on the stability of IMI/CIL were investigated. IMI/CIL was purged with air, premixed oxygen/nitrogen gas (5%/95%), or high-purity nitrogen (99.999%) at 20, 5, or 2% oxygen levels to prepare IMI/CIL with different HO levels. IMI/CIL was stored at 30, 45, and 75% relative humidity for 30 days to prepare IMI/CIL with different water contents. High-performance liquid chromatography method was used for analysis. The results showed that oxygen, water, particle shape, and particle size had significant effects on the stability of IMI/CIL, and free water content is a better predictor of the safety and stability of imipenem and cilastatin sodium than the total water content. The optimization scheme of the above parameters is proposed, which significantly improves the stability of IMI/CIL. This study led to a better understanding of the degradation mechanism of imipenem and cilastatin sodium, and could provide a reference for the selection and control of IMI/CIL process conditions. This study would contribute to the development of IMI/CIL with improved stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
24
审稿时长
15 weeks
期刊最新文献
Recent Advances in Mitochondrial Pyruvate Carrier Inhibitors Discovery of a Novel Benzimidazole Necroptosis Inhibitor from an In-House Compound Library Research Strategies for Precise Manipulation of Micro/Nanoparticle Drug Delivery Systems Using Microfluidic Technology: A Review Advances in Tumor Targeting Biomimetic Drug Delivery Systems: A Promising Approach for Antitumor Therapy 3D Printing Pharmaceuticals: Current Status and Future Opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1