{"title":"通过分布式投资提高电力系统复原力的保险范例","authors":"Farhad Billimoria;Filiberto Fele;Iacopo Savelli;Thomas Morstyn;Malcolm McCulloch","doi":"10.1109/TEMPR.2023.3301830","DOIUrl":null,"url":null,"abstract":"Extreme events, exacerbated by climate change, pose significant risks to the energy system and its consumers. However there are natural limits to the degree of protection that can be delivered from a centralised market architecture. Distributed energy resources provide resilience to the energy system, but their value remains inadequately recognized by regulatory frameworks. We propose an insurance framework to align residual outage risk exposure with locational incentives for distributed investment. We demonstrate that leveraging this framework in large-scale electricity systems could improve consumer welfare outcomes in the face of growing risks from extreme events via investment in distributed energy.","PeriodicalId":100639,"journal":{"name":"IEEE Transactions on Energy Markets, Policy and Regulation","volume":"1 4","pages":"499-511"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Insurance Paradigm for Improving Power System Resilience via Distributed Investment\",\"authors\":\"Farhad Billimoria;Filiberto Fele;Iacopo Savelli;Thomas Morstyn;Malcolm McCulloch\",\"doi\":\"10.1109/TEMPR.2023.3301830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extreme events, exacerbated by climate change, pose significant risks to the energy system and its consumers. However there are natural limits to the degree of protection that can be delivered from a centralised market architecture. Distributed energy resources provide resilience to the energy system, but their value remains inadequately recognized by regulatory frameworks. We propose an insurance framework to align residual outage risk exposure with locational incentives for distributed investment. We demonstrate that leveraging this framework in large-scale electricity systems could improve consumer welfare outcomes in the face of growing risks from extreme events via investment in distributed energy.\",\"PeriodicalId\":100639,\"journal\":{\"name\":\"IEEE Transactions on Energy Markets, Policy and Regulation\",\"volume\":\"1 4\",\"pages\":\"499-511\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Energy Markets, Policy and Regulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10209236/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Energy Markets, Policy and Regulation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10209236/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Insurance Paradigm for Improving Power System Resilience via Distributed Investment
Extreme events, exacerbated by climate change, pose significant risks to the energy system and its consumers. However there are natural limits to the degree of protection that can be delivered from a centralised market architecture. Distributed energy resources provide resilience to the energy system, but their value remains inadequately recognized by regulatory frameworks. We propose an insurance framework to align residual outage risk exposure with locational incentives for distributed investment. We demonstrate that leveraging this framework in large-scale electricity systems could improve consumer welfare outcomes in the face of growing risks from extreme events via investment in distributed energy.