分子云集合中自重力多向湍流的密度分布

S. Donkov, I. Stefanov, T. Veltchev, R. Klessen
{"title":"分子云集合中自重力多向湍流的密度分布","authors":"S. Donkov, I. Stefanov, T. Veltchev, R. Klessen","doi":"10.1093/mnras/stab1572","DOIUrl":null,"url":null,"abstract":"We obtain an equation for the density profile in a self-gravitating polytropic spherically symmetric turbulent fluid with an equation of state $p_{\\rm gas}\\propto \\rho^\\Gamma$. This is done in the framework of ensembles of molecular clouds represented by single abstract objects as introduced by Donkov et al. (2017). The adopted physical picture is appropriate to describe the conditions near to the cloud core where the equation of state changes from isothermal (in the outer cloud layers) with $\\Gamma=1$ to one of `hard polytrope' with exponent $\\Gamma>1$. On the assumption of steady state, as the accreting matter passes through all spatial scales, we show that the total energy per unit mass is an invariant with respect to the fluid flow. The obtained equation reproduces the Bernoulli equation for the proposed model and describes the balance of the kinetic, thermal and gravitational energy of a fluid element. We propose as well a method to obtain approximate solutions in a power-law form which yields four solutions corresponding to different density profiles, polytropic exponents and energy balance equations for a fluid element. Only one of them, a density profile with slope $-3$ and polytropic exponent $\\Gamma=4/3$, matches with observations and numerical works. In particular, it yields a second power-law tail of the density distribution function in dense cloud regions.","PeriodicalId":8452,"journal":{"name":"arXiv: Astrophysics of Galaxies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Density profile of a self-gravitating polytropic turbulent fluid in the context of ensembles of molecular clouds\",\"authors\":\"S. Donkov, I. Stefanov, T. Veltchev, R. Klessen\",\"doi\":\"10.1093/mnras/stab1572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain an equation for the density profile in a self-gravitating polytropic spherically symmetric turbulent fluid with an equation of state $p_{\\\\rm gas}\\\\propto \\\\rho^\\\\Gamma$. This is done in the framework of ensembles of molecular clouds represented by single abstract objects as introduced by Donkov et al. (2017). The adopted physical picture is appropriate to describe the conditions near to the cloud core where the equation of state changes from isothermal (in the outer cloud layers) with $\\\\Gamma=1$ to one of `hard polytrope' with exponent $\\\\Gamma>1$. On the assumption of steady state, as the accreting matter passes through all spatial scales, we show that the total energy per unit mass is an invariant with respect to the fluid flow. The obtained equation reproduces the Bernoulli equation for the proposed model and describes the balance of the kinetic, thermal and gravitational energy of a fluid element. We propose as well a method to obtain approximate solutions in a power-law form which yields four solutions corresponding to different density profiles, polytropic exponents and energy balance equations for a fluid element. Only one of them, a density profile with slope $-3$ and polytropic exponent $\\\\Gamma=4/3$, matches with observations and numerical works. In particular, it yields a second power-law tail of the density distribution function in dense cloud regions.\",\"PeriodicalId\":8452,\"journal\":{\"name\":\"arXiv: Astrophysics of Galaxies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Astrophysics of Galaxies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/mnras/stab1572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Astrophysics of Galaxies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnras/stab1572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

用状态方程$p_{\rm gas}\propto \rho^\Gamma$得到了自重力多向球对称湍流的密度分布方程。这是在Donkov等人(2017)引入的由单个抽象对象表示的分子云集成框架中完成的。所采用的物理图适合于描述云核附近的条件,在那里状态方程从具有$\Gamma=1$的等温(在外层云层中)变为具有$\Gamma>1$指数的“硬多相”之一。在稳态假设下,当吸积物质通过所有空间尺度时,我们证明了单位质量的总能量相对于流体流动是一个不变量。得到的方程再现了所提出模型的伯努利方程,并描述了流体单元的动能、热能和重力场的平衡。我们还提出了一种幂律形式的近似解的方法,该方法可以得到流体单元不同密度分布、多向指数和能量平衡方程对应的四种解。其中只有一个斜率为$-3$和多向指数$\Gamma=4/3$的密度剖面与观测和数值工作相匹配。特别是,它产生了密度分布函数在稠密云区域的第二个幂律尾部。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Density profile of a self-gravitating polytropic turbulent fluid in the context of ensembles of molecular clouds
We obtain an equation for the density profile in a self-gravitating polytropic spherically symmetric turbulent fluid with an equation of state $p_{\rm gas}\propto \rho^\Gamma$. This is done in the framework of ensembles of molecular clouds represented by single abstract objects as introduced by Donkov et al. (2017). The adopted physical picture is appropriate to describe the conditions near to the cloud core where the equation of state changes from isothermal (in the outer cloud layers) with $\Gamma=1$ to one of `hard polytrope' with exponent $\Gamma>1$. On the assumption of steady state, as the accreting matter passes through all spatial scales, we show that the total energy per unit mass is an invariant with respect to the fluid flow. The obtained equation reproduces the Bernoulli equation for the proposed model and describes the balance of the kinetic, thermal and gravitational energy of a fluid element. We propose as well a method to obtain approximate solutions in a power-law form which yields four solutions corresponding to different density profiles, polytropic exponents and energy balance equations for a fluid element. Only one of them, a density profile with slope $-3$ and polytropic exponent $\Gamma=4/3$, matches with observations and numerical works. In particular, it yields a second power-law tail of the density distribution function in dense cloud regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Whistler-regulated MHD: Transport equations for electron thermal conduction in the high $β$ intracluster medium of galaxy clusters Galaxy properties of type 1 and 2 X-ray selected AGN and a comparison among different classification criteria Chemical modeling of the complex organic molecules in the extended region around Sagittarius B2 Explaining the scatter in the galaxy mass–metallicity relation with gas flows METAL: The Metal Evolution, Transport, and Abundance in the Large Magellanic Cloud Hubble program. II. Variations of interstellar depletions and dust-to-gas ratio within the LMC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1