天然气性质与流量计算

Q2 Earth and Planetary Sciences 天然气地球科学 Pub Date : 2010-01-01 DOI:10.5772/9871
I. Marić, I. Ivek
{"title":"天然气性质与流量计算","authors":"I. Marić, I. Ivek","doi":"10.5772/9871","DOIUrl":null,"url":null,"abstract":"The detailed procedure for the calculation of thermodynamic properties based on formulations explicit in Helmholtz energy (Lemmon & Starling, 2003) and on AGA-8 detail characterization equation (Starling & Savidge, 1992) is given in (ISO-207651-1, 2005). Here we elaborate an alternative procedure for the calculation of properties of a natural gas that was originally published in the Journal Flow Measurement and Instrumentation (Maric, 2005 & 2007). The procedure is derived using fundamental thermodynamic equations (Olander, 2007), DIPPR AIChE (DIPPR® Project 801, 2005) generic ideal heat capacity equations, and AGA-8 (Starling & Savidge, 1992) extended virial-type equations of state. The procedure specifies the calculation of specific heat capacities at a constant pressure cp and at a constant volume cv, the JT coefficient μJT, and the isentropic exponent κ of a natural gas. The effect of a JT expansion on the accuracy of natural gas flow rate measurements will be pointed out. The possibilities of using the computational intelligence methods - Artificial Neural Networks - ANNs (Ferrari & Stengel, 2005, Wilamowski et al., 2008) and machine learning tools - Group Method of Data Handling - GMDH (Ivakhnenko, 1971, Nikolaev & Iba, 2003) for meta-modeling the effects of natural gas properties in flow rate measurements (Maric & Ivek, 2010) will be illustrated. The practical examples of ANN and GMDH surrogate models for the compensation of natural gas flow rate measurement error caused by the thermodynamic effects, with the corresponding accuracies and execution times will be given. The models are particularly suitable for implementation in low computing power embedded systems.","PeriodicalId":38389,"journal":{"name":"天然气地球科学","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Natural gas properties and flow computation\",\"authors\":\"I. Marić, I. Ivek\",\"doi\":\"10.5772/9871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detailed procedure for the calculation of thermodynamic properties based on formulations explicit in Helmholtz energy (Lemmon & Starling, 2003) and on AGA-8 detail characterization equation (Starling & Savidge, 1992) is given in (ISO-207651-1, 2005). Here we elaborate an alternative procedure for the calculation of properties of a natural gas that was originally published in the Journal Flow Measurement and Instrumentation (Maric, 2005 & 2007). The procedure is derived using fundamental thermodynamic equations (Olander, 2007), DIPPR AIChE (DIPPR® Project 801, 2005) generic ideal heat capacity equations, and AGA-8 (Starling & Savidge, 1992) extended virial-type equations of state. The procedure specifies the calculation of specific heat capacities at a constant pressure cp and at a constant volume cv, the JT coefficient μJT, and the isentropic exponent κ of a natural gas. The effect of a JT expansion on the accuracy of natural gas flow rate measurements will be pointed out. The possibilities of using the computational intelligence methods - Artificial Neural Networks - ANNs (Ferrari & Stengel, 2005, Wilamowski et al., 2008) and machine learning tools - Group Method of Data Handling - GMDH (Ivakhnenko, 1971, Nikolaev & Iba, 2003) for meta-modeling the effects of natural gas properties in flow rate measurements (Maric & Ivek, 2010) will be illustrated. The practical examples of ANN and GMDH surrogate models for the compensation of natural gas flow rate measurement error caused by the thermodynamic effects, with the corresponding accuracies and execution times will be given. The models are particularly suitable for implementation in low computing power embedded systems.\",\"PeriodicalId\":38389,\"journal\":{\"name\":\"天然气地球科学\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"天然气地球科学\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.5772/9871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"天然气地球科学","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.5772/9871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 2

摘要

基于亥姆霍兹能量(Lemmon & Starling, 2003)和AGA-8详细表征方程(Starling & Savidge, 1992)的明确公式计算热力学性质的详细步骤见(iso -207651- 1,2005)。在这里,我们详细阐述了一种计算天然气性质的替代程序,该程序最初发表在《流量测量与仪器仪表》杂志(Maric, 2005年和2007年)。该过程是使用基本热力学方程(Olander, 2007), DIPPR AIChE (DIPPR®项目801,2005)一般理想热容量方程和AGA-8 (Starling & Savidge, 1992)扩展的viri型状态方程推导出来的。该程序规定了天然气定压比热容cp和定容比热容cv、JT系数μJT和等熵指数κ的计算方法。指出了JT膨胀对天然气流量测量精度的影响。将说明使用计算智能方法-人工神经网络- ann (Ferrari & Stengel, 2005年,Wilamowski等人,2008年)和机器学习工具-数据处理组方法- GMDH (Ivakhnenko, 1971年,Nikolaev & Iba, 2003年)对天然气特性在流量测量中的影响进行元建模(Maric & Ivek, 2010年)的可能性。给出了人工神经网络和GMDH替代模型补偿天然气流量测量误差的实例,并给出了相应的精度和执行时间。这些模型特别适合在低计算能力的嵌入式系统中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Natural gas properties and flow computation
The detailed procedure for the calculation of thermodynamic properties based on formulations explicit in Helmholtz energy (Lemmon & Starling, 2003) and on AGA-8 detail characterization equation (Starling & Savidge, 1992) is given in (ISO-207651-1, 2005). Here we elaborate an alternative procedure for the calculation of properties of a natural gas that was originally published in the Journal Flow Measurement and Instrumentation (Maric, 2005 & 2007). The procedure is derived using fundamental thermodynamic equations (Olander, 2007), DIPPR AIChE (DIPPR® Project 801, 2005) generic ideal heat capacity equations, and AGA-8 (Starling & Savidge, 1992) extended virial-type equations of state. The procedure specifies the calculation of specific heat capacities at a constant pressure cp and at a constant volume cv, the JT coefficient μJT, and the isentropic exponent κ of a natural gas. The effect of a JT expansion on the accuracy of natural gas flow rate measurements will be pointed out. The possibilities of using the computational intelligence methods - Artificial Neural Networks - ANNs (Ferrari & Stengel, 2005, Wilamowski et al., 2008) and machine learning tools - Group Method of Data Handling - GMDH (Ivakhnenko, 1971, Nikolaev & Iba, 2003) for meta-modeling the effects of natural gas properties in flow rate measurements (Maric & Ivek, 2010) will be illustrated. The practical examples of ANN and GMDH surrogate models for the compensation of natural gas flow rate measurement error caused by the thermodynamic effects, with the corresponding accuracies and execution times will be given. The models are particularly suitable for implementation in low computing power embedded systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
天然气地球科学
天然气地球科学 Earth and Planetary Sciences-Geology
CiteScore
3.50
自引率
0.00%
发文量
4449
期刊介绍: Natural Gas Geoscience is a national level academic journal of mineral deposit science that is approved by the General Administration of Press and Publication of the People's Republic of China, headed by the Chinese Academy of Sciences, and sponsored by the Resource and Environmental Science Information Center of the Chinese Academy of Sciences. The Natural Gas Earth Science Journal was founded in 1990 and published monthly. The domestic unified serial number of the journal is 62-1177/TE, and the international standard serial number is 1672-1926. Inclusion/Honors in Natural Gas Geoscience Magazine: Caj cd standard award-winning journal, Peking University's "Overview of Chinese Core Journals", CA Chemical Abstracts (USA) (2014) JST Japan Science and Technology Agency Database (Japan) (2018), CSCD China Science Citation Database (2017-2018) W (including extended version), CNKI Statistical Source Core Journal (China Science and Technology Paper Core Journal)
期刊最新文献
Progress on the different methods of reserves calculation in the whole life cycle of gas reservoir development The Bawang Member, a unique unit of Belaga Formation in the Miri Zone, Central Sarawak, NW Borneo Malaysia: Revised stratigraphic and sedimentological characteristics Several essential geological and geochemical issues regarding shale gas research in China Corrigendum to “Giant discoveries of oil and gas fields in global deepwaters in the past 40 years and the prospect of exploration” [J. Nat. Gas Geosci 4(1) (February 2019) 1–28] Geochemistry and accumulation model of the Ordovician hydrocarbon in the Sichuan Basin, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1