支持物联网的网络物理系统中网络攻击检测和表征的机器学习方法

Shanmukha Kantimahanthi, J. Prasad, Sravan Chanamolu, Kavyasree Kommaraju
{"title":"支持物联网的网络物理系统中网络攻击检测和表征的机器学习方法","authors":"Shanmukha Kantimahanthi, J. Prasad, Sravan Chanamolu, Kavyasree Kommaraju","doi":"10.1109/IDCIoT56793.2023.10053545","DOIUrl":null,"url":null,"abstract":"Cyber-physical systems (CPS) enabled by the Internet of Things (IoT) provide unique security challenges since solutions designed for traditional Operational Technology (OT) and Information Technology (IT) systems may not be adequate in a Cyber-Physical System environment. With that in mind, this research introduces a two-tiered integrated attack detection and attack attribution framework ideal for Cyber-physical systems (CPS), and more particularly in an Industrial Control System (ICS). In order to identify assaults in unbalanced ICS settings, in the first phase, a unique ensemble deep-representational learning model is coupled with a decision tree classifier. In the next phase, an attack attribution ensemble deep neural network is developed. Datasets from the MODBUS and the natural gas pipeline industry are used to test the accuracy of the proposed model. The proposed model outperforms comparable models with a similar degree of computational complexity.","PeriodicalId":60583,"journal":{"name":"物联网技术","volume":"33 1","pages":"136-142"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Approaches in Cyber Attack Detection and Characterization in IoT enabled Cyber-Physical Systems\",\"authors\":\"Shanmukha Kantimahanthi, J. Prasad, Sravan Chanamolu, Kavyasree Kommaraju\",\"doi\":\"10.1109/IDCIoT56793.2023.10053545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber-physical systems (CPS) enabled by the Internet of Things (IoT) provide unique security challenges since solutions designed for traditional Operational Technology (OT) and Information Technology (IT) systems may not be adequate in a Cyber-Physical System environment. With that in mind, this research introduces a two-tiered integrated attack detection and attack attribution framework ideal for Cyber-physical systems (CPS), and more particularly in an Industrial Control System (ICS). In order to identify assaults in unbalanced ICS settings, in the first phase, a unique ensemble deep-representational learning model is coupled with a decision tree classifier. In the next phase, an attack attribution ensemble deep neural network is developed. Datasets from the MODBUS and the natural gas pipeline industry are used to test the accuracy of the proposed model. The proposed model outperforms comparable models with a similar degree of computational complexity.\",\"PeriodicalId\":60583,\"journal\":{\"name\":\"物联网技术\",\"volume\":\"33 1\",\"pages\":\"136-142\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物联网技术\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/IDCIoT56793.2023.10053545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物联网技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/IDCIoT56793.2023.10053545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)支持的网络物理系统(CPS)提供了独特的安全挑战,因为为传统操作技术(OT)和信息技术(IT)系统设计的解决方案可能不适用于网络物理系统环境。考虑到这一点,本研究引入了一个两层集成攻击检测和攻击归因框架,非常适合网络物理系统(CPS),特别是工业控制系统(ICS)。为了识别不平衡ICS设置中的攻击,在第一阶段,将一个独特的集成深度表征学习模型与决策树分类器相结合。下一阶段,研究了一种攻击归因集成深度神经网络。使用MODBUS和天然气管道行业的数据集来测试所提出模型的准确性。所提出的模型优于具有相似计算复杂度的可比模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Approaches in Cyber Attack Detection and Characterization in IoT enabled Cyber-Physical Systems
Cyber-physical systems (CPS) enabled by the Internet of Things (IoT) provide unique security challenges since solutions designed for traditional Operational Technology (OT) and Information Technology (IT) systems may not be adequate in a Cyber-Physical System environment. With that in mind, this research introduces a two-tiered integrated attack detection and attack attribution framework ideal for Cyber-physical systems (CPS), and more particularly in an Industrial Control System (ICS). In order to identify assaults in unbalanced ICS settings, in the first phase, a unique ensemble deep-representational learning model is coupled with a decision tree classifier. In the next phase, an attack attribution ensemble deep neural network is developed. Datasets from the MODBUS and the natural gas pipeline industry are used to test the accuracy of the proposed model. The proposed model outperforms comparable models with a similar degree of computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
5689
期刊最新文献
Circumvolution of Centre Pixel Algorithm in Pixel Value Differencing Steganography Model in the Spatial Domain Prevention of Aflatoxin in Peanut Using Naive Bayes Model Smart Energy Meter and Monitoring System using Internet of Things (IoT) Maximizing the Net Present Value of Resource-Constrained Project Scheduling Problems using Recurrent Neural Network with Genetic Algorithm Framework for Implementation of Personality Inventory Model on Natural Language Processing with Personality Traits Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1