级联:通道感知的结构化稀疏音频衰减器

Clément Gaultier, N. Bertin, R. Gribonval
{"title":"级联:通道感知的结构化稀疏音频衰减器","authors":"Clément Gaultier, N. Bertin, R. Gribonval","doi":"10.1109/ICASSP.2018.8461694","DOIUrl":null,"url":null,"abstract":"This work features a new algorithm, CASCADE, which leverages a structured cosparse prior across channels to address the multichannel audio declipping problem. CASCADE technique outperforms the state-of-the-art method A-SPADE applied on each channel separately in all tested settings, while retaining similar runtime.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"19 1","pages":"571-575"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Cascade: Channel-Aware Structured Cosparse Audio Declipper\",\"authors\":\"Clément Gaultier, N. Bertin, R. Gribonval\",\"doi\":\"10.1109/ICASSP.2018.8461694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work features a new algorithm, CASCADE, which leverages a structured cosparse prior across channels to address the multichannel audio declipping problem. CASCADE technique outperforms the state-of-the-art method A-SPADE applied on each channel separately in all tested settings, while retaining similar runtime.\",\"PeriodicalId\":6638,\"journal\":{\"name\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"19 1\",\"pages\":\"571-575\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2018.8461694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8461694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

这项工作的特点是一种新的算法,CASCADE,它利用跨通道的结构化共稀疏先验来解决多通道音频衰减问题。级联技术优于最先进的A-SPADE方法,在所有测试设置中分别应用于每个通道,同时保持相似的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cascade: Channel-Aware Structured Cosparse Audio Declipper
This work features a new algorithm, CASCADE, which leverages a structured cosparse prior across channels to address the multichannel audio declipping problem. CASCADE technique outperforms the state-of-the-art method A-SPADE applied on each channel separately in all tested settings, while retaining similar runtime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduced Dimension Minimum BER PSK Precoding for Constrained Transmit Signals in Massive MIMO Low Complexity Joint RDO of Prediction Units Couples for HEVC Intra Coding Non-Native Children Speech Recognition Through Transfer Learning Synthesis of Images by Two-Stage Generative Adversarial Networks Statistical T+2d Subband Modelling for Crowd Counting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1