使用库普曼方法的机械振荡器数据驱动的降阶建模

IF 1.3 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Frontiers in Applied Mathematics and Statistics Pub Date : 2023-04-28 DOI:10.3389/fams.2023.1124602
Charlotte Geier, M. Stender, N. Hoffmann
{"title":"使用库普曼方法的机械振荡器数据驱动的降阶建模","authors":"Charlotte Geier, M. Stender, N. Hoffmann","doi":"10.3389/fams.2023.1124602","DOIUrl":null,"url":null,"abstract":"Data-driven reduced order modeling methods that aim at extracting physically meaningful governing equations directly from measurement data are facing a growing interest in recent years. The HAVOK-algorithm is a Koopman-based method that distills a forced, low-dimensional state-space model for a given dynamical system from a univariate measurement time series. This article studies the potential of HAVOK for application to mechanical oscillators by investigating which information of the underlying system can be extracted from the state-space model generated by HAVOK. Extensive parameter studies are performed to point out the strengths and pitfalls of the algorithm and ultimately yield recommendations for choosing tuning parameters. The application of the algorithm to real-world friction brake system measurements concludes this study.","PeriodicalId":36662,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":"085 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven reduced order modeling for mechanical oscillators using Koopman approaches\",\"authors\":\"Charlotte Geier, M. Stender, N. Hoffmann\",\"doi\":\"10.3389/fams.2023.1124602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-driven reduced order modeling methods that aim at extracting physically meaningful governing equations directly from measurement data are facing a growing interest in recent years. The HAVOK-algorithm is a Koopman-based method that distills a forced, low-dimensional state-space model for a given dynamical system from a univariate measurement time series. This article studies the potential of HAVOK for application to mechanical oscillators by investigating which information of the underlying system can be extracted from the state-space model generated by HAVOK. Extensive parameter studies are performed to point out the strengths and pitfalls of the algorithm and ultimately yield recommendations for choosing tuning parameters. The application of the algorithm to real-world friction brake system measurements concludes this study.\",\"PeriodicalId\":36662,\"journal\":{\"name\":\"Frontiers in Applied Mathematics and Statistics\",\"volume\":\"085 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Applied Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fams.2023.1124602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fams.2023.1124602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

数据驱动的降阶建模方法旨在直接从测量数据中提取物理上有意义的控制方程,近年来受到越来越多的关注。havok算法是一种基于koopman的方法,它从单变量测量时间序列中提取给定动力系统的强制低维状态空间模型。本文通过研究HAVOK生成的状态空间模型可以提取底层系统的哪些信息,来研究HAVOK应用于机械振荡器的潜力。进行了广泛的参数研究,以指出算法的优点和缺陷,并最终提出选择调优参数的建议。最后将该算法应用于实际摩擦制动系统的测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-driven reduced order modeling for mechanical oscillators using Koopman approaches
Data-driven reduced order modeling methods that aim at extracting physically meaningful governing equations directly from measurement data are facing a growing interest in recent years. The HAVOK-algorithm is a Koopman-based method that distills a forced, low-dimensional state-space model for a given dynamical system from a univariate measurement time series. This article studies the potential of HAVOK for application to mechanical oscillators by investigating which information of the underlying system can be extracted from the state-space model generated by HAVOK. Extensive parameter studies are performed to point out the strengths and pitfalls of the algorithm and ultimately yield recommendations for choosing tuning parameters. The application of the algorithm to real-world friction brake system measurements concludes this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Applied Mathematics and Statistics
Frontiers in Applied Mathematics and Statistics Mathematics-Statistics and Probability
CiteScore
1.90
自引率
7.10%
发文量
117
审稿时长
14 weeks
期刊最新文献
Third-degree B-spline collocation method for singularly perturbed time delay parabolic problem with two parameters Item response theory to discriminate COVID-19 knowledge and attitudes among university students Editorial: Justified modeling frameworks and novel interpretations of ecological and epidemiological systems Pneumonia and COVID-19 co-infection modeling with optimal control analysis Enhanced corn seed disease classification: leveraging MobileNetV2 with feature augmentation and transfer learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1