一种用于河流洪水实时预测的进化多层感知器算法

Geerish Suddul, K. Dookhitram, Girish Bekaroo, Nikhilesh Shankhur
{"title":"一种用于河流洪水实时预测的进化多层感知器算法","authors":"Geerish Suddul, K. Dookhitram, Girish Bekaroo, Nikhilesh Shankhur","doi":"10.1109/ZINC50678.2020.9161824","DOIUrl":null,"url":null,"abstract":"Severe flash flood events give very little opportunity for issuing warnings. In this paper, we approach the automated and real time prediction of river flooding by proposing and evaluating different variations of the conventional Multilayer Perceptron (MLP) machine learning algorithm. Our first approach follows a trial and error attempt to optimize the MLP architecture. The second and third approaches are based on the application of nature inspired evolutionary techniques, namely the Genetic Algorithm (MLP-GA) and the Bat Algorithm (MLP-BA) respectively. The MLP-GA generates an improved MLP configuration and MLP-BA enhances the training method. Our fourth, novel approach (MLP-BA-GA) is based on the application of GA to further optimize both the BA and MLP architecture. When compared with previous work, experiments show improvement in the accuracy of river flood prediction, with significant results for the MLP-BA-GA.","PeriodicalId":6731,"journal":{"name":"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)","volume":"42 1","pages":"109-112"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Evolutionary MultiLayer Perceptron Algorithm for Real Time River Flood Prediction\",\"authors\":\"Geerish Suddul, K. Dookhitram, Girish Bekaroo, Nikhilesh Shankhur\",\"doi\":\"10.1109/ZINC50678.2020.9161824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Severe flash flood events give very little opportunity for issuing warnings. In this paper, we approach the automated and real time prediction of river flooding by proposing and evaluating different variations of the conventional Multilayer Perceptron (MLP) machine learning algorithm. Our first approach follows a trial and error attempt to optimize the MLP architecture. The second and third approaches are based on the application of nature inspired evolutionary techniques, namely the Genetic Algorithm (MLP-GA) and the Bat Algorithm (MLP-BA) respectively. The MLP-GA generates an improved MLP configuration and MLP-BA enhances the training method. Our fourth, novel approach (MLP-BA-GA) is based on the application of GA to further optimize both the BA and MLP architecture. When compared with previous work, experiments show improvement in the accuracy of river flood prediction, with significant results for the MLP-BA-GA.\",\"PeriodicalId\":6731,\"journal\":{\"name\":\"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)\",\"volume\":\"42 1\",\"pages\":\"109-112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ZINC50678.2020.9161824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ZINC50678.2020.9161824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

严重的山洪事件几乎没有机会发布警告。在本文中,我们通过提出和评估传统多层感知器(MLP)机器学习算法的不同变体来实现河流洪水的自动实时预测。我们的第一种方法是通过反复试验来优化MLP体系结构。第二和第三种方法是基于自然启发的进化技术的应用,即遗传算法(MLP-GA)和蝙蝠算法(MLP-BA)。MLP- ga生成改进的MLP配置,MLP- ba增强了训练方法。我们的第四种新方法(MLP-BA-GA)基于遗传算法的应用来进一步优化BA和MLP架构。实验结果表明,与前人相比,MLP-BA-GA的预测精度得到了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Evolutionary MultiLayer Perceptron Algorithm for Real Time River Flood Prediction
Severe flash flood events give very little opportunity for issuing warnings. In this paper, we approach the automated and real time prediction of river flooding by proposing and evaluating different variations of the conventional Multilayer Perceptron (MLP) machine learning algorithm. Our first approach follows a trial and error attempt to optimize the MLP architecture. The second and third approaches are based on the application of nature inspired evolutionary techniques, namely the Genetic Algorithm (MLP-GA) and the Bat Algorithm (MLP-BA) respectively. The MLP-GA generates an improved MLP configuration and MLP-BA enhances the training method. Our fourth, novel approach (MLP-BA-GA) is based on the application of GA to further optimize both the BA and MLP architecture. When compared with previous work, experiments show improvement in the accuracy of river flood prediction, with significant results for the MLP-BA-GA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting Plant Water and Soil Nutrient Requirements RFM and Classification Predictive Modelling to Improve Response Prediction Rate Utility analysis and rating of energy storages in trolleybus power supply system Face recognition based on selection approach via Canonical Correlation Analysis feature fusion The Concept of Consumer IP Address Preservation Behind the Load Balancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1