通过空白空间卸载提高蜂窝容量

S. Bayhan, Liang Zheng, Jiasi Chen, M. D. Francesco, J. Kangasharju, M. Chiang
{"title":"通过空白空间卸载提高蜂窝容量","authors":"S. Bayhan, Liang Zheng, Jiasi Chen, M. D. Francesco, J. Kangasharju, M. Chiang","doi":"10.23919/WIOPT.2017.7959891","DOIUrl":null,"url":null,"abstract":"With growing data demand and the current dearth of spectrum, mobile operators are looking for new frequency bands to satisfy data-hungry users. One promising avenue of expansion is TV white spaces, which are currently available to secondary users as long as they do not interfere with primary (i.e., incumbent) users. In this work, we explore the benefits of offloading cellular traffic onto TV white spaces. We develop an analytical model and efficient algorithms to assign users to the cellular network or white space channels by considering their channel gains, multi-user interference on white space channels, and the cost of switching between different networks. We perform extensive data-driven simulations in two representative urban scenarios based on publicly available datasets. Our results show that white spaces can increase capacity by 16–62%, depending on the environment, but careful network selection is necessary to ensure that maximum capacity gains are realized. Moreover, we show that white spaces provide a significant benefit in serving indoor users where cellular channel conditions are poor. Specifically, our algorithms can offload up to 40% of cellular traffic to white spaces for indoor scenarios.","PeriodicalId":6630,"journal":{"name":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Improving cellular capacity with white space offloading\",\"authors\":\"S. Bayhan, Liang Zheng, Jiasi Chen, M. D. Francesco, J. Kangasharju, M. Chiang\",\"doi\":\"10.23919/WIOPT.2017.7959891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With growing data demand and the current dearth of spectrum, mobile operators are looking for new frequency bands to satisfy data-hungry users. One promising avenue of expansion is TV white spaces, which are currently available to secondary users as long as they do not interfere with primary (i.e., incumbent) users. In this work, we explore the benefits of offloading cellular traffic onto TV white spaces. We develop an analytical model and efficient algorithms to assign users to the cellular network or white space channels by considering their channel gains, multi-user interference on white space channels, and the cost of switching between different networks. We perform extensive data-driven simulations in two representative urban scenarios based on publicly available datasets. Our results show that white spaces can increase capacity by 16–62%, depending on the environment, but careful network selection is necessary to ensure that maximum capacity gains are realized. Moreover, we show that white spaces provide a significant benefit in serving indoor users where cellular channel conditions are poor. Specifically, our algorithms can offload up to 40% of cellular traffic to white spaces for indoor scenarios.\",\"PeriodicalId\":6630,\"journal\":{\"name\":\"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/WIOPT.2017.7959891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WIOPT.2017.7959891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

随着数据需求的增长和频谱的匮乏,移动运营商正在寻找新的频段来满足数据饥渴的用户。一个有希望的扩展途径是电视空白空间,只要次要用户不干扰主要用户(即现有用户),就可以使用这些空白空间。在这项工作中,我们探讨了将蜂窝流量卸载到电视空白空间的好处。我们开发了一种分析模型和有效的算法,通过考虑蜂窝网络或空白信道的信道增益、空白信道上的多用户干扰以及不同网络之间切换的成本,将用户分配到蜂窝网络或空白信道。我们基于公开可用的数据集,在两个具有代表性的城市场景中进行了广泛的数据驱动模拟。我们的结果表明,根据环境的不同,空白空间可以增加16-62%的容量,但是仔细的网络选择是必要的,以确保实现最大的容量增益。此外,我们表明,在蜂窝信道条件较差的室内用户中,空白空间提供了显著的好处。具体来说,我们的算法可以将高达40%的蜂窝流量卸载到室内场景的空白空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving cellular capacity with white space offloading
With growing data demand and the current dearth of spectrum, mobile operators are looking for new frequency bands to satisfy data-hungry users. One promising avenue of expansion is TV white spaces, which are currently available to secondary users as long as they do not interfere with primary (i.e., incumbent) users. In this work, we explore the benefits of offloading cellular traffic onto TV white spaces. We develop an analytical model and efficient algorithms to assign users to the cellular network or white space channels by considering their channel gains, multi-user interference on white space channels, and the cost of switching between different networks. We perform extensive data-driven simulations in two representative urban scenarios based on publicly available datasets. Our results show that white spaces can increase capacity by 16–62%, depending on the environment, but careful network selection is necessary to ensure that maximum capacity gains are realized. Moreover, we show that white spaces provide a significant benefit in serving indoor users where cellular channel conditions are poor. Specifically, our algorithms can offload up to 40% of cellular traffic to white spaces for indoor scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keynote speaker Keynote speaker Ad-Hoc, Mobile, and Wireless Networks: 19th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW 2020, Bari, Italy, October 19–21, 2020, Proceedings Retraction Note to: Mobility Aided Context-Aware Forwarding Approach for Destination-Less OppNets Ad-Hoc, Mobile, and Wireless Networks: 18th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW 2019, Luxembourg, Luxembourg, October 1–3, 2019, Proceedings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1