Polygravity:在多租户数据中心中通过粗粒度测量实现流量使用责任

H. Baek, Cheng Jin, Guofei Jiang, C. Lumezanu, J. Merwe, Ning Xia, Qiang Xu
{"title":"Polygravity:在多租户数据中心中通过粗粒度测量实现流量使用责任","authors":"H. Baek, Cheng Jin, Guofei Jiang, C. Lumezanu, J. Merwe, Ning Xia, Qiang Xu","doi":"10.1145/3127479.3129258","DOIUrl":null,"url":null,"abstract":"Network usage accountability is critical in helping operators and customers of multi-tenant data centers deal with concerns such as capacity planning, resource allocation, hotspot detection, link failure detection, and troubleshooting. However, the cost of measurements and instrumentation to achieve flow-level accountability is non-trivial. We propose Polygravity to determine tenant traffic usage via lightweight measurements in multi-tenant data centers. We adopt a tomogravity model widely used in ISP networks, and adapt it to a multi-tenant data center environment. By integrating datacenter-specific domain knowledge, sampling-based partial estimation and gravity-based internal sinks/sources estimation, Polygravity addresses two key challenges for adapting tomogravity to a data center environment: sparse traffic matrices and internal traffic sinks/sources. We conducted extensive evaluation of our approach using realistic data center workloads. Our results show that Polygravity can determine tenant IP flow usage with less than 1% average relative error for tenants with fine-grained domain knowledge. In addition, for tenants with coarse-grained domain knowledge and with partial host-based sampling, Polygravity reduces the relative error of sampling-based estimation by 1/3.","PeriodicalId":20679,"journal":{"name":"Proceedings of the 2017 Symposium on Cloud Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Polygravity: traffic usage accountability via coarse-grained measurements in multi-tenant data centers\",\"authors\":\"H. Baek, Cheng Jin, Guofei Jiang, C. Lumezanu, J. Merwe, Ning Xia, Qiang Xu\",\"doi\":\"10.1145/3127479.3129258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network usage accountability is critical in helping operators and customers of multi-tenant data centers deal with concerns such as capacity planning, resource allocation, hotspot detection, link failure detection, and troubleshooting. However, the cost of measurements and instrumentation to achieve flow-level accountability is non-trivial. We propose Polygravity to determine tenant traffic usage via lightweight measurements in multi-tenant data centers. We adopt a tomogravity model widely used in ISP networks, and adapt it to a multi-tenant data center environment. By integrating datacenter-specific domain knowledge, sampling-based partial estimation and gravity-based internal sinks/sources estimation, Polygravity addresses two key challenges for adapting tomogravity to a data center environment: sparse traffic matrices and internal traffic sinks/sources. We conducted extensive evaluation of our approach using realistic data center workloads. Our results show that Polygravity can determine tenant IP flow usage with less than 1% average relative error for tenants with fine-grained domain knowledge. In addition, for tenants with coarse-grained domain knowledge and with partial host-based sampling, Polygravity reduces the relative error of sampling-based estimation by 1/3.\",\"PeriodicalId\":20679,\"journal\":{\"name\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3127479.3129258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3127479.3129258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

网络使用责任对于帮助多租户数据中心的运营商和客户处理诸如容量规划、资源分配、热点检测、链路故障检测和故障排除等问题至关重要。然而,实现流级责任的测量和仪器的成本不是微不足道的。我们建议Polygravity通过多租户数据中心中的轻量级测量来确定租户流量使用情况。我们采用了在ISP网络中广泛使用的一种自重力模型,并将其适应于多租户数据中心环境。通过集成数据中心特定的领域知识、基于采样的部分估计和基于重力的内部汇/源估计,Polygravity解决了使tomogravity适应数据中心环境的两个关键挑战:稀疏流量矩阵和内部流量汇/源。我们使用实际的数据中心工作负载对我们的方法进行了广泛的评估。我们的结果表明,对于具有细粒度领域知识的租户,Polygravity可以以小于1%的平均相对误差确定租户IP流使用情况。此外,对于具有粗粒度领域知识和部分基于主机采样的租户,Polygravity将基于采样的估计的相对误差降低了1/3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polygravity: traffic usage accountability via coarse-grained measurements in multi-tenant data centers
Network usage accountability is critical in helping operators and customers of multi-tenant data centers deal with concerns such as capacity planning, resource allocation, hotspot detection, link failure detection, and troubleshooting. However, the cost of measurements and instrumentation to achieve flow-level accountability is non-trivial. We propose Polygravity to determine tenant traffic usage via lightweight measurements in multi-tenant data centers. We adopt a tomogravity model widely used in ISP networks, and adapt it to a multi-tenant data center environment. By integrating datacenter-specific domain knowledge, sampling-based partial estimation and gravity-based internal sinks/sources estimation, Polygravity addresses two key challenges for adapting tomogravity to a data center environment: sparse traffic matrices and internal traffic sinks/sources. We conducted extensive evaluation of our approach using realistic data center workloads. Our results show that Polygravity can determine tenant IP flow usage with less than 1% average relative error for tenants with fine-grained domain knowledge. In addition, for tenants with coarse-grained domain knowledge and with partial host-based sampling, Polygravity reduces the relative error of sampling-based estimation by 1/3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Janus: supporting heterogeneous power management in virtualized environments On-demand virtualization for live migration in bare metal cloud Preserving I/O prioritization in virtualized OSes To edge or not to edge? Indy: a software system for the dense cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1