H. Baek, Cheng Jin, Guofei Jiang, C. Lumezanu, J. Merwe, Ning Xia, Qiang Xu
{"title":"Polygravity:在多租户数据中心中通过粗粒度测量实现流量使用责任","authors":"H. Baek, Cheng Jin, Guofei Jiang, C. Lumezanu, J. Merwe, Ning Xia, Qiang Xu","doi":"10.1145/3127479.3129258","DOIUrl":null,"url":null,"abstract":"Network usage accountability is critical in helping operators and customers of multi-tenant data centers deal with concerns such as capacity planning, resource allocation, hotspot detection, link failure detection, and troubleshooting. However, the cost of measurements and instrumentation to achieve flow-level accountability is non-trivial. We propose Polygravity to determine tenant traffic usage via lightweight measurements in multi-tenant data centers. We adopt a tomogravity model widely used in ISP networks, and adapt it to a multi-tenant data center environment. By integrating datacenter-specific domain knowledge, sampling-based partial estimation and gravity-based internal sinks/sources estimation, Polygravity addresses two key challenges for adapting tomogravity to a data center environment: sparse traffic matrices and internal traffic sinks/sources. We conducted extensive evaluation of our approach using realistic data center workloads. Our results show that Polygravity can determine tenant IP flow usage with less than 1% average relative error for tenants with fine-grained domain knowledge. In addition, for tenants with coarse-grained domain knowledge and with partial host-based sampling, Polygravity reduces the relative error of sampling-based estimation by 1/3.","PeriodicalId":20679,"journal":{"name":"Proceedings of the 2017 Symposium on Cloud Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Polygravity: traffic usage accountability via coarse-grained measurements in multi-tenant data centers\",\"authors\":\"H. Baek, Cheng Jin, Guofei Jiang, C. Lumezanu, J. Merwe, Ning Xia, Qiang Xu\",\"doi\":\"10.1145/3127479.3129258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network usage accountability is critical in helping operators and customers of multi-tenant data centers deal with concerns such as capacity planning, resource allocation, hotspot detection, link failure detection, and troubleshooting. However, the cost of measurements and instrumentation to achieve flow-level accountability is non-trivial. We propose Polygravity to determine tenant traffic usage via lightweight measurements in multi-tenant data centers. We adopt a tomogravity model widely used in ISP networks, and adapt it to a multi-tenant data center environment. By integrating datacenter-specific domain knowledge, sampling-based partial estimation and gravity-based internal sinks/sources estimation, Polygravity addresses two key challenges for adapting tomogravity to a data center environment: sparse traffic matrices and internal traffic sinks/sources. We conducted extensive evaluation of our approach using realistic data center workloads. Our results show that Polygravity can determine tenant IP flow usage with less than 1% average relative error for tenants with fine-grained domain knowledge. In addition, for tenants with coarse-grained domain knowledge and with partial host-based sampling, Polygravity reduces the relative error of sampling-based estimation by 1/3.\",\"PeriodicalId\":20679,\"journal\":{\"name\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3127479.3129258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3127479.3129258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polygravity: traffic usage accountability via coarse-grained measurements in multi-tenant data centers
Network usage accountability is critical in helping operators and customers of multi-tenant data centers deal with concerns such as capacity planning, resource allocation, hotspot detection, link failure detection, and troubleshooting. However, the cost of measurements and instrumentation to achieve flow-level accountability is non-trivial. We propose Polygravity to determine tenant traffic usage via lightweight measurements in multi-tenant data centers. We adopt a tomogravity model widely used in ISP networks, and adapt it to a multi-tenant data center environment. By integrating datacenter-specific domain knowledge, sampling-based partial estimation and gravity-based internal sinks/sources estimation, Polygravity addresses two key challenges for adapting tomogravity to a data center environment: sparse traffic matrices and internal traffic sinks/sources. We conducted extensive evaluation of our approach using realistic data center workloads. Our results show that Polygravity can determine tenant IP flow usage with less than 1% average relative error for tenants with fine-grained domain knowledge. In addition, for tenants with coarse-grained domain knowledge and with partial host-based sampling, Polygravity reduces the relative error of sampling-based estimation by 1/3.