检测藏羊线粒体基因组的选择特征

IF 1.1 4区 生物学 Q4 GENETICS & HEREDITY Mitochondrial Dna Part a Pub Date : 2017-11-01 DOI:10.1080/24701394.2016.1192614
L. Niu, Xiaoyong Chen, Ping Xiao, Qianjun Zhao, Jingxuan Zhou, Jiangtao Hu, Hongxin Sun, Jiazhong Guo, Li Li, Linjie Wang, Hongping Zhang, T. Zhong
{"title":"检测藏羊线粒体基因组的选择特征","authors":"L. Niu, Xiaoyong Chen, Ping Xiao, Qianjun Zhao, Jingxuan Zhou, Jiangtao Hu, Hongxin Sun, Jiazhong Guo, Li Li, Linjie Wang, Hongping Zhang, T. Zhong","doi":"10.1080/24701394.2016.1192614","DOIUrl":null,"url":null,"abstract":"Abstract Tibetan sheep, a Chinese indigenous breed, are mainly distributed in plateau and mountain-valley areas at a terrestrial elevation between 2260 and 4100 m. The herd is genetically distinct from the other domestic sheep and undergoes acclimatization to adapt to the hypoxic environment. To date, whether the mitochondrial DNA modification of Tibetan sheep shares the same feature as the other domestic breed remains unknown. In this study, we compared the whole mitogenome sequences from 32 Tibetan sheep, 22 domestic sheep and 24 commercial sheep to identify the selection signatures of hypoxic-tolerant in Tibetan sheep. Nucleotide diversity analysis using the sliding window method showed that the highest level of nucleotide diversity was observed in the control region with a peak value of π = 0.05215, while the lowest π value was detected in the tRNAs region. qPCR results showed that the relative mtDNA copy number in Tibetan sheep was significantly lower than that in Suffolk sheep. None of the mutations in 12S rRNA were fixed in Tibetan sheep, which indicated that there has been less artificial selection in this herd than the other domestic and commercial breeds. Although one site (1277G) might undergo the purifying selection, it was not identified as the breed-specific allele in Tibetan sheep. We proposed that nature selection was the main drive during the domestication of Tibetan sheep and single mutation (or locus) could not reveal the signature of selection as for the high diversity in the mitogenome of Tibetan sheep.","PeriodicalId":54298,"journal":{"name":"Mitochondrial Dna Part a","volume":"31 1","pages":"801 - 809"},"PeriodicalIF":1.1000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Detecting signatures of selection within the Tibetan sheep mitochondrial genome\",\"authors\":\"L. Niu, Xiaoyong Chen, Ping Xiao, Qianjun Zhao, Jingxuan Zhou, Jiangtao Hu, Hongxin Sun, Jiazhong Guo, Li Li, Linjie Wang, Hongping Zhang, T. Zhong\",\"doi\":\"10.1080/24701394.2016.1192614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Tibetan sheep, a Chinese indigenous breed, are mainly distributed in plateau and mountain-valley areas at a terrestrial elevation between 2260 and 4100 m. The herd is genetically distinct from the other domestic sheep and undergoes acclimatization to adapt to the hypoxic environment. To date, whether the mitochondrial DNA modification of Tibetan sheep shares the same feature as the other domestic breed remains unknown. In this study, we compared the whole mitogenome sequences from 32 Tibetan sheep, 22 domestic sheep and 24 commercial sheep to identify the selection signatures of hypoxic-tolerant in Tibetan sheep. Nucleotide diversity analysis using the sliding window method showed that the highest level of nucleotide diversity was observed in the control region with a peak value of π = 0.05215, while the lowest π value was detected in the tRNAs region. qPCR results showed that the relative mtDNA copy number in Tibetan sheep was significantly lower than that in Suffolk sheep. None of the mutations in 12S rRNA were fixed in Tibetan sheep, which indicated that there has been less artificial selection in this herd than the other domestic and commercial breeds. Although one site (1277G) might undergo the purifying selection, it was not identified as the breed-specific allele in Tibetan sheep. We proposed that nature selection was the main drive during the domestication of Tibetan sheep and single mutation (or locus) could not reveal the signature of selection as for the high diversity in the mitogenome of Tibetan sheep.\",\"PeriodicalId\":54298,\"journal\":{\"name\":\"Mitochondrial Dna Part a\",\"volume\":\"31 1\",\"pages\":\"801 - 809\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mitochondrial Dna Part a\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/24701394.2016.1192614\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrial Dna Part a","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/24701394.2016.1192614","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 15

摘要

摘要藏羊是中国的本土品种,主要分布在海拔2260 ~ 4100 m的高原和山谷地区。这群羊在遗传上与其他家养羊不同,并经历了适应缺氧环境的适应症。迄今为止,藏羊的线粒体DNA修饰是否与其他家养品种具有相同的特征仍然未知。本研究比较了32只藏羊、22只家羊和24只商品羊的全有丝分裂基因组序列,以确定藏羊耐缺氧的选择特征。滑动窗口法分析结果显示,对照区核苷酸多样性最高,峰值为π = 0.05215, tRNAs区最低。qPCR结果显示,藏羊的相对mtDNA拷贝数显著低于萨福克羊。藏羊的12S rRNA突变均未固定,说明藏羊的人工选择较少。虽然其中一个位点(1277G)可能经过了纯化选择,但未被鉴定为藏羊的品种特异性等位基因。我们认为,自然选择是藏羊驯化过程中的主要驱动因素,单突变(或位点)不能揭示藏羊有丝分裂基因组高度多样性的选择特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting signatures of selection within the Tibetan sheep mitochondrial genome
Abstract Tibetan sheep, a Chinese indigenous breed, are mainly distributed in plateau and mountain-valley areas at a terrestrial elevation between 2260 and 4100 m. The herd is genetically distinct from the other domestic sheep and undergoes acclimatization to adapt to the hypoxic environment. To date, whether the mitochondrial DNA modification of Tibetan sheep shares the same feature as the other domestic breed remains unknown. In this study, we compared the whole mitogenome sequences from 32 Tibetan sheep, 22 domestic sheep and 24 commercial sheep to identify the selection signatures of hypoxic-tolerant in Tibetan sheep. Nucleotide diversity analysis using the sliding window method showed that the highest level of nucleotide diversity was observed in the control region with a peak value of π = 0.05215, while the lowest π value was detected in the tRNAs region. qPCR results showed that the relative mtDNA copy number in Tibetan sheep was significantly lower than that in Suffolk sheep. None of the mutations in 12S rRNA were fixed in Tibetan sheep, which indicated that there has been less artificial selection in this herd than the other domestic and commercial breeds. Although one site (1277G) might undergo the purifying selection, it was not identified as the breed-specific allele in Tibetan sheep. We proposed that nature selection was the main drive during the domestication of Tibetan sheep and single mutation (or locus) could not reveal the signature of selection as for the high diversity in the mitogenome of Tibetan sheep.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mitochondrial Dna Part a
Mitochondrial Dna Part a Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.00
自引率
0.00%
发文量
6
期刊介绍: Mitochondrial DNA Part A publishes original high-quality manuscripts on physical, chemical, and biochemical aspects of mtDNA and proteins involved in mtDNA metabolism, and/or interactions. Manuscripts on cytosolic and extracellular mtDNA, and on dysfunction caused by alterations in mtDNA integrity as well as methodological papers detailing novel approaches for mtDNA manipulation in vitro and in vivo are welcome. Descriptive papers on DNA sequences from mitochondrial genomes, and also analytical papers in the areas of population genetics, phylogenetics and human evolution that use mitochondrial DNA as a source of evidence for studies will be considered for publication. The Journal also considers manuscripts that examine population genetic and systematic theory that specifically address the use of mitochondrial DNA sequences, as well as papers that discuss the utility of mitochondrial DNA information in medical studies and in human evolutionary biology.
期刊最新文献
Big jaw, small genome: first description of the mitochondrial genome of Odontomachus (Formicidae, Ponerinae): evolutionary implications for Ponerinae ants Mitogenomic analysis of Rüppell’s fox (Vulpes rueppellii) confirms phylogenetic placement within the Palaearctic clade shared with its sister species, the red fox (Vulpes vulpes) The complete mitochondrial genome and phylogenetic position of Schizothorax argentatus (Cyprinomorpha: Crypriniformes: Cyprinidae) Opsarius siangi, a new Chedrinae fish species from the Brahmaputra drainage, India Secondary contact of two cryptic Hokou gecko groups in the Izu Islands, Japan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1