{"title":"基于可靠性的气动弹性无动力飞行器多学科设计优化","authors":"S. Pourtakdoust, Amir H. Khodabakhsh","doi":"10.1177/09544100231198160","DOIUrl":null,"url":null,"abstract":"Most Aeronautical and Astronautical Systems (AAS) are inherently complex, multidisciplinary, nonlinear, and computationally intensive for design and analysis. Utilizing the Reliability-Based Multidisciplinary Design Optimization framework can address the multidisciplinary nature of these systems while accounting for inherent uncertainties. In this paper, an efficient methodology for Reliability-Based Multidisciplinary Design optimization of an aerial vehicle is developed. The computational burden of reliability assessment could make its integration within a Multidisciplinary Design Optimization cycle a formidable task. In this respect, a multilevel Multidisciplinary Design Optimization architecture is proposed in which the computational cost is reduced by considering the reliability analysis, as needed only for critical subsystems. To this end, a single-level Reliability-Based Multidisciplinary Design Optimization is derived using the Performance Measure Analysis and the Karush-Kuhn-Tucker condition. The work demonstrates the integration of this formulation into the proposed multilevel Reliability-Based Multidisciplinary Design Optimization architecture. The proposed design architecture is implemented for an aeroelastic Unpowered Guided Aerial Vehicle whose outcomes are compared with previous results obtained via a mono-level Uncertainty-Based Multidisciplinary Design Optimization architecture.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"37 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability-based multidisciplinary design optimization of an aeroelastic unpowered guided aerial vehicle\",\"authors\":\"S. Pourtakdoust, Amir H. Khodabakhsh\",\"doi\":\"10.1177/09544100231198160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most Aeronautical and Astronautical Systems (AAS) are inherently complex, multidisciplinary, nonlinear, and computationally intensive for design and analysis. Utilizing the Reliability-Based Multidisciplinary Design Optimization framework can address the multidisciplinary nature of these systems while accounting for inherent uncertainties. In this paper, an efficient methodology for Reliability-Based Multidisciplinary Design optimization of an aerial vehicle is developed. The computational burden of reliability assessment could make its integration within a Multidisciplinary Design Optimization cycle a formidable task. In this respect, a multilevel Multidisciplinary Design Optimization architecture is proposed in which the computational cost is reduced by considering the reliability analysis, as needed only for critical subsystems. To this end, a single-level Reliability-Based Multidisciplinary Design Optimization is derived using the Performance Measure Analysis and the Karush-Kuhn-Tucker condition. The work demonstrates the integration of this formulation into the proposed multilevel Reliability-Based Multidisciplinary Design Optimization architecture. The proposed design architecture is implemented for an aeroelastic Unpowered Guided Aerial Vehicle whose outcomes are compared with previous results obtained via a mono-level Uncertainty-Based Multidisciplinary Design Optimization architecture.\",\"PeriodicalId\":54566,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544100231198160\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544100231198160","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Reliability-based multidisciplinary design optimization of an aeroelastic unpowered guided aerial vehicle
Most Aeronautical and Astronautical Systems (AAS) are inherently complex, multidisciplinary, nonlinear, and computationally intensive for design and analysis. Utilizing the Reliability-Based Multidisciplinary Design Optimization framework can address the multidisciplinary nature of these systems while accounting for inherent uncertainties. In this paper, an efficient methodology for Reliability-Based Multidisciplinary Design optimization of an aerial vehicle is developed. The computational burden of reliability assessment could make its integration within a Multidisciplinary Design Optimization cycle a formidable task. In this respect, a multilevel Multidisciplinary Design Optimization architecture is proposed in which the computational cost is reduced by considering the reliability analysis, as needed only for critical subsystems. To this end, a single-level Reliability-Based Multidisciplinary Design Optimization is derived using the Performance Measure Analysis and the Karush-Kuhn-Tucker condition. The work demonstrates the integration of this formulation into the proposed multilevel Reliability-Based Multidisciplinary Design Optimization architecture. The proposed design architecture is implemented for an aeroelastic Unpowered Guided Aerial Vehicle whose outcomes are compared with previous results obtained via a mono-level Uncertainty-Based Multidisciplinary Design Optimization architecture.
期刊介绍:
The Journal of Aerospace Engineering is dedicated to the publication of high quality research in all branches of applied sciences and technology dealing with aircraft and spacecraft, and their support systems. "Our authorship is truly international and all efforts are made to ensure that each paper is presented in the best possible way and reaches a wide audience.
"The Editorial Board is composed of recognized experts representing the technical communities of fifteen countries. The Board Members work in close cooperation with the editors, reviewers, and authors to achieve a consistent standard of well written and presented papers."Professor Rodrigo Martinez-Val, Universidad Politécnica de Madrid, Spain
This journal is a member of the Committee on Publication Ethics (COPE).