非等温CSTR的RBF神经网络建模

Seyed Mohammad Attaran, S. Abdullah
{"title":"非等温CSTR的RBF神经网络建模","authors":"Seyed Mohammad Attaran, S. Abdullah","doi":"10.1109/ICMSAO.2011.5775525","DOIUrl":null,"url":null,"abstract":"In this paper we provide a short review of radial basis function (RBF) and its properties. In addition RBF NN was used to estimate the non-Isothermal CSTR. For achieving this goal because of on lining data it was necessary to use the RLS each time that new data come to system. By using this method (RLS), RBF NN updates its weights for mapping the input and output of the system.","PeriodicalId":6383,"journal":{"name":"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization","volume":"221 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modeling of non isothermal CSTR with the method of RBF NN\",\"authors\":\"Seyed Mohammad Attaran, S. Abdullah\",\"doi\":\"10.1109/ICMSAO.2011.5775525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we provide a short review of radial basis function (RBF) and its properties. In addition RBF NN was used to estimate the non-Isothermal CSTR. For achieving this goal because of on lining data it was necessary to use the RLS each time that new data come to system. By using this method (RLS), RBF NN updates its weights for mapping the input and output of the system.\",\"PeriodicalId\":6383,\"journal\":{\"name\":\"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization\",\"volume\":\"221 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMSAO.2011.5775525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMSAO.2011.5775525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文简要介绍了径向基函数及其性质。此外,采用RBF神经网络对非等温CSTR进行估计。为了实现这一目标,由于没有衬里数据,每次新数据进入系统时都必须使用RLS。通过这种方法(RLS), RBF神经网络更新其权值来映射系统的输入和输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling of non isothermal CSTR with the method of RBF NN
In this paper we provide a short review of radial basis function (RBF) and its properties. In addition RBF NN was used to estimate the non-Isothermal CSTR. For achieving this goal because of on lining data it was necessary to use the RLS each time that new data come to system. By using this method (RLS), RBF NN updates its weights for mapping the input and output of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact and Scope of Electric Power Generation Demand Using Renewable Energy Resources Due to COVID-19 Introductory Lectures on Convex Optimization - A Basic Course Development of energy harvesting device using piezoelectric material Modelling and simulation of solar chimney power plant performances in southern region of Algeria A sequential approach for fault detection and identification of vehicles' ultrasonic parking sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1