Jordan Adamek, Mikhail Nesterenko, J. Robinson, S. Tixeuil
{"title":"无状态可靠的地理铸造","authors":"Jordan Adamek, Mikhail Nesterenko, J. Robinson, S. Tixeuil","doi":"10.1109/SRDS.2017.13","DOIUrl":null,"url":null,"abstract":"We present two geometric routing algorithms that reliably deliver messages to all devices in a geocast region. One algorithm is based on flooding, the other on concurrent geometric routing. They are the fist known stateless geocasting algorithms. We formally prove the algorithms correct, evaluate their performance through abstract and concrete simulation and estimate their message complexity.","PeriodicalId":6475,"journal":{"name":"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Stateless Reliable Geocasting\",\"authors\":\"Jordan Adamek, Mikhail Nesterenko, J. Robinson, S. Tixeuil\",\"doi\":\"10.1109/SRDS.2017.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present two geometric routing algorithms that reliably deliver messages to all devices in a geocast region. One algorithm is based on flooding, the other on concurrent geometric routing. They are the fist known stateless geocasting algorithms. We formally prove the algorithms correct, evaluate their performance through abstract and concrete simulation and estimate their message complexity.\",\"PeriodicalId\":6475,\"journal\":{\"name\":\"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SRDS.2017.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2017.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present two geometric routing algorithms that reliably deliver messages to all devices in a geocast region. One algorithm is based on flooding, the other on concurrent geometric routing. They are the fist known stateless geocasting algorithms. We formally prove the algorithms correct, evaluate their performance through abstract and concrete simulation and estimate their message complexity.