片剂配方中穿孔粘着预测模型的评价

Edward Paul Rhodes, N. Dawson, Jeremy Everett, Debbie Kraus, Michael Cram, Paul Whiteside
{"title":"片剂配方中穿孔粘着预测模型的评价","authors":"Edward Paul Rhodes, N. Dawson, Jeremy Everett, Debbie Kraus, Michael Cram, Paul Whiteside","doi":"10.5920/bjpharm.1118","DOIUrl":null,"url":null,"abstract":"Punchsticking is a common tablet compression manufacturing issue experienced duringlate-stage large-scale manufacturing. Prediction of punch sticking propensityand identification of the sticking component is important for early-stageformulation development. Application of novel predictive capabilities offers early-stagesticking propensity assessment. 16 API compounds were utilised to assess punchsticking prediction using removable punch tip tooling. API descriptors weretested for sticking correlation using multivariate analysis. NIR imaging, SEM-EDXand Raman microscopy were used to examine the material adhered to the punch tips.Predictive modelling using linear and non-linear equations proved inaccurate inpunch sticking mass prediction.  PCA analysisidentified sticking correlated physical descriptors and provided a dataset andmethod for further descriptor studies. Raman microscopy was identified as asuitable technique for chemical identification of punch sticking material, whichoffers insight towards a mechanistic understanding.","PeriodicalId":9253,"journal":{"name":"British Journal of Pharmacy","volume":"1954 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Prediction Models for Punch Sticking in Tablet Formulations\",\"authors\":\"Edward Paul Rhodes, N. Dawson, Jeremy Everett, Debbie Kraus, Michael Cram, Paul Whiteside\",\"doi\":\"10.5920/bjpharm.1118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Punchsticking is a common tablet compression manufacturing issue experienced duringlate-stage large-scale manufacturing. Prediction of punch sticking propensityand identification of the sticking component is important for early-stageformulation development. Application of novel predictive capabilities offers early-stagesticking propensity assessment. 16 API compounds were utilised to assess punchsticking prediction using removable punch tip tooling. API descriptors weretested for sticking correlation using multivariate analysis. NIR imaging, SEM-EDXand Raman microscopy were used to examine the material adhered to the punch tips.Predictive modelling using linear and non-linear equations proved inaccurate inpunch sticking mass prediction.  PCA analysisidentified sticking correlated physical descriptors and provided a dataset andmethod for further descriptor studies. Raman microscopy was identified as asuitable technique for chemical identification of punch sticking material, whichoffers insight towards a mechanistic understanding.\",\"PeriodicalId\":9253,\"journal\":{\"name\":\"British Journal of Pharmacy\",\"volume\":\"1954 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Pharmacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5920/bjpharm.1118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5920/bjpharm.1118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

穿孔是在后期大规模生产中常见的片剂压缩生产问题。预测冲床黏着倾向和黏着成分的识别是早期配方开发的重要内容。新的预测能力的应用提供了早期粘滞倾向评估。使用16种API化合物来评估使用可移动冲头工具的冲孔预测。使用多变量分析对API描述符进行粘着相关性测试。采用近红外成像、SEM-EDXand拉曼显微镜对材料粘附在冲头上进行检测。采用线性和非线性方程的预测模型对冲床黏着质量进行预测是不准确的。主成分分析识别出粘着相关的物理描述符,为描述符的进一步研究提供了数据集和方法。拉曼显微技术被认为是一种适合于冲压材料化学鉴定的技术,有助于对其机理的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment of Prediction Models for Punch Sticking in Tablet Formulations
Punchsticking is a common tablet compression manufacturing issue experienced duringlate-stage large-scale manufacturing. Prediction of punch sticking propensityand identification of the sticking component is important for early-stageformulation development. Application of novel predictive capabilities offers early-stagesticking propensity assessment. 16 API compounds were utilised to assess punchsticking prediction using removable punch tip tooling. API descriptors weretested for sticking correlation using multivariate analysis. NIR imaging, SEM-EDXand Raman microscopy were used to examine the material adhered to the punch tips.Predictive modelling using linear and non-linear equations proved inaccurate inpunch sticking mass prediction.  PCA analysisidentified sticking correlated physical descriptors and provided a dataset andmethod for further descriptor studies. Raman microscopy was identified as asuitable technique for chemical identification of punch sticking material, whichoffers insight towards a mechanistic understanding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Case Law: A Review of Selected Pharmaceutical Patents Litigated in the UK Courts during 2022 Ensuring Pharmaceutical Product Success through Excipient QbD Efforts Solubility Enhancement for Dietheyldithiocarbamate-Zinc for Lung Cancer Treatment Impact of Critical Material Attributes of HPMC on the Release of Gliclazide from Hydrophilic Matrix Tablets Comparative Evaluation of the Disintegrant Properties of Starches from Three Cultivars of Dioscorea rotundata (Poir)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1