{"title":"求解椭圆型Neumann边界控制问题的有限体积元法","authors":"Quanxiang Wang","doi":"10.4236/am.2020.1112085","DOIUrl":null,"url":null,"abstract":"Solving optimization problems with partial differential equations constraints is one of the most challenging problems in the context of industrial applications. In this paper, we study the finite volume element method for solving the elliptic Neumann boundary control problems. The variational discretization approach is used to deal with the control. Numerical results demonstrate that the proposed method for control is second-order accuracy in the L2 (Γ) and L∞ (Γ) norm. For state and adjoint state, optimal convergence order in the L2 (Ω) and H1 (Ω) can also be obtained.","PeriodicalId":55568,"journal":{"name":"Applied Mathematics-A Journal of Chinese Universities Series B","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Volume Element Method for Solving the Elliptic Neumann Boundary Control Problems\",\"authors\":\"Quanxiang Wang\",\"doi\":\"10.4236/am.2020.1112085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solving optimization problems with partial differential equations constraints is one of the most challenging problems in the context of industrial applications. In this paper, we study the finite volume element method for solving the elliptic Neumann boundary control problems. The variational discretization approach is used to deal with the control. Numerical results demonstrate that the proposed method for control is second-order accuracy in the L2 (Γ) and L∞ (Γ) norm. For state and adjoint state, optimal convergence order in the L2 (Ω) and H1 (Ω) can also be obtained.\",\"PeriodicalId\":55568,\"journal\":{\"name\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4236/am.2020.1112085\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics-A Journal of Chinese Universities Series B","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4236/am.2020.1112085","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finite Volume Element Method for Solving the Elliptic Neumann Boundary Control Problems
Solving optimization problems with partial differential equations constraints is one of the most challenging problems in the context of industrial applications. In this paper, we study the finite volume element method for solving the elliptic Neumann boundary control problems. The variational discretization approach is used to deal with the control. Numerical results demonstrate that the proposed method for control is second-order accuracy in the L2 (Γ) and L∞ (Γ) norm. For state and adjoint state, optimal convergence order in the L2 (Ω) and H1 (Ω) can also be obtained.
期刊介绍:
Applied Mathematics promotes the integration of mathematics with other scientific disciplines, expanding its fields of study and promoting the development of relevant interdisciplinary subjects.
The journal mainly publishes original research papers that apply mathematical concepts, theories and methods to other subjects such as physics, chemistry, biology, information science, energy, environmental science, economics, and finance. In addition, it also reports the latest developments and trends in which mathematics interacts with other disciplines. Readers include professors and students, professionals in applied mathematics, and engineers at research institutes and in industry.
Applied Mathematics - A Journal of Chinese Universities has been an English-language quarterly since 1993. The English edition, abbreviated as Series B, has different contents than this Chinese edition, Series A.