{"title":"利用fds6并行版软件对真实公路隧道中射流风机产生的气流进行了计算机模拟","authors":"P. Weisenpacher, L. Valásek","doi":"10.1080/14733315.2019.1698164","DOIUrl":null,"url":null,"abstract":"Abstract In this paper the FDS 6 code ability to simulate the airflows generated by jet fans in a real road tunnel is studied. A transient model of the 898 m long bi-directional highway Polana tunnel is created including details of the tunnel geometry as emergency lay-bys and traffic signs. The absolute roughness of the tunnel walls of 70 mm is determined to represent the influence of curved tunnel geometry and tunnel equipment not explicitly modelled on the tunnel airflows and their retardation. The simulations results are compared against on-site measurements during a full-scale ventilation test conducted in the Polana tunnel in 2017. The comparison includes steady-state bulk airflow velocity and velocity profile investigated by a grid of five anemometers. The simulations results are in good accordance with experimental data with relative errors below 2% for bulk velocities and typically below 9% for velocities measured by particular grid anemometers. Specific circumstances where errors exceed the latter value are discussed. The influence of unknown external dynamic pressure fluctuations on the simulation results is also analysed. Optimal settings for parallel computations are determined from the point of view of simulation accuracy and performance. The model is intended for purposes of tunnel fires modelling.","PeriodicalId":55613,"journal":{"name":"International Journal of Ventilation","volume":"102 1","pages":"20 - 33"},"PeriodicalIF":1.1000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Computer simulation of airflows generated by jet fans in real road tunnel by parallel version of FDS 6\",\"authors\":\"P. Weisenpacher, L. Valásek\",\"doi\":\"10.1080/14733315.2019.1698164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper the FDS 6 code ability to simulate the airflows generated by jet fans in a real road tunnel is studied. A transient model of the 898 m long bi-directional highway Polana tunnel is created including details of the tunnel geometry as emergency lay-bys and traffic signs. The absolute roughness of the tunnel walls of 70 mm is determined to represent the influence of curved tunnel geometry and tunnel equipment not explicitly modelled on the tunnel airflows and their retardation. The simulations results are compared against on-site measurements during a full-scale ventilation test conducted in the Polana tunnel in 2017. The comparison includes steady-state bulk airflow velocity and velocity profile investigated by a grid of five anemometers. The simulations results are in good accordance with experimental data with relative errors below 2% for bulk velocities and typically below 9% for velocities measured by particular grid anemometers. Specific circumstances where errors exceed the latter value are discussed. The influence of unknown external dynamic pressure fluctuations on the simulation results is also analysed. Optimal settings for parallel computations are determined from the point of view of simulation accuracy and performance. The model is intended for purposes of tunnel fires modelling.\",\"PeriodicalId\":55613,\"journal\":{\"name\":\"International Journal of Ventilation\",\"volume\":\"102 1\",\"pages\":\"20 - 33\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Ventilation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14733315.2019.1698164\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Ventilation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14733315.2019.1698164","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Computer simulation of airflows generated by jet fans in real road tunnel by parallel version of FDS 6
Abstract In this paper the FDS 6 code ability to simulate the airflows generated by jet fans in a real road tunnel is studied. A transient model of the 898 m long bi-directional highway Polana tunnel is created including details of the tunnel geometry as emergency lay-bys and traffic signs. The absolute roughness of the tunnel walls of 70 mm is determined to represent the influence of curved tunnel geometry and tunnel equipment not explicitly modelled on the tunnel airflows and their retardation. The simulations results are compared against on-site measurements during a full-scale ventilation test conducted in the Polana tunnel in 2017. The comparison includes steady-state bulk airflow velocity and velocity profile investigated by a grid of five anemometers. The simulations results are in good accordance with experimental data with relative errors below 2% for bulk velocities and typically below 9% for velocities measured by particular grid anemometers. Specific circumstances where errors exceed the latter value are discussed. The influence of unknown external dynamic pressure fluctuations on the simulation results is also analysed. Optimal settings for parallel computations are determined from the point of view of simulation accuracy and performance. The model is intended for purposes of tunnel fires modelling.
期刊介绍:
This is a peer reviewed journal aimed at providing the latest information on research and application.
Topics include:
• New ideas concerned with the development or application of ventilation;
• Validated case studies demonstrating the performance of ventilation strategies;
• Information on needs and solutions for specific building types including: offices, dwellings, schools, hospitals, parking garages, urban buildings and recreational buildings etc;
• Developments in numerical methods;
• Measurement techniques;
• Related issues in which the impact of ventilation plays an important role (e.g. the interaction of ventilation with air quality, health and comfort);
• Energy issues related to ventilation (e.g. low energy systems, ventilation heating and cooling loss);
• Driving forces (weather data, fan performance etc).