基于经验小波变换和深度卷积神经网络的相控阵超声检测信号增强与分类

Jayasudha Jc, L. S
{"title":"基于经验小波变换和深度卷积神经网络的相控阵超声检测信号增强与分类","authors":"Jayasudha Jc, L. S","doi":"10.1177/1063293X211073714","DOIUrl":null,"url":null,"abstract":"In the recent past, Non-Destructive Testing (NDT) has become the most popular technique due to its efficiency and accuracy without destroying the object and maintaining its original structure and gathering while examining external and internal welding defects. Generally, the NDT environment is harmful which is distinguished by huge volatile fields of electromagnetic, elevated radiation emission instability, and elevated heat. Therefore, a suitable NDT approach could be recognized and practiced. In this paper, a novel algorithm is proposed based on a Phased array ultrasonic test (PAUT) for NDT to attain the proper test attributes. In the proposed methodology, the carbon steel welding section is synthetically produced with various defects and tested using the PAUT method. The signals which are acquired from the PAUT device are having noise. The Adaptive Least Mean Square (ALMS) filter is proposed to filter PAUT signal to eliminate random noise and Gaussian noise. The ALMS filter is the combination of low pass filter (LPF), high pass filter (HPF), and bandpass filter (BPF). The time-domain PAUT signal is converted into a frequency-domain signal to extract more features by applying the Empirical Wavelet Transform (EWT) algorithm. In the frequency domain signal, first order and second order features extraction techniques are applied to extract various features for further classification. The Deep Learning methodology is proposed for the classification of PAUT signals. Based on the PAUT signal features, the Deep Convolution Neural Network (DCNN) is applied for further classification. The DCNN will classify the welding signal as to whether it is defective or non-defective. The Confusion Matrix (CM) is used for the estimation of measurement of performance of classification as calculating accuracy, sensitivity, and specificity. The experiments prove that the proposed methodology for PAUT testing for welding defect classification is obtained more accurately and efficiently across existing methodologies by providing numerical and graphical results.","PeriodicalId":10680,"journal":{"name":"Concurrent Engineering","volume":"60 1","pages":"229 - 236"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Phased array ultrasonic test signal enhancement and classification using Empirical Wavelet Transform and Deep Convolution Neural Network\",\"authors\":\"Jayasudha Jc, L. S\",\"doi\":\"10.1177/1063293X211073714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the recent past, Non-Destructive Testing (NDT) has become the most popular technique due to its efficiency and accuracy without destroying the object and maintaining its original structure and gathering while examining external and internal welding defects. Generally, the NDT environment is harmful which is distinguished by huge volatile fields of electromagnetic, elevated radiation emission instability, and elevated heat. Therefore, a suitable NDT approach could be recognized and practiced. In this paper, a novel algorithm is proposed based on a Phased array ultrasonic test (PAUT) for NDT to attain the proper test attributes. In the proposed methodology, the carbon steel welding section is synthetically produced with various defects and tested using the PAUT method. The signals which are acquired from the PAUT device are having noise. The Adaptive Least Mean Square (ALMS) filter is proposed to filter PAUT signal to eliminate random noise and Gaussian noise. The ALMS filter is the combination of low pass filter (LPF), high pass filter (HPF), and bandpass filter (BPF). The time-domain PAUT signal is converted into a frequency-domain signal to extract more features by applying the Empirical Wavelet Transform (EWT) algorithm. In the frequency domain signal, first order and second order features extraction techniques are applied to extract various features for further classification. The Deep Learning methodology is proposed for the classification of PAUT signals. Based on the PAUT signal features, the Deep Convolution Neural Network (DCNN) is applied for further classification. The DCNN will classify the welding signal as to whether it is defective or non-defective. The Confusion Matrix (CM) is used for the estimation of measurement of performance of classification as calculating accuracy, sensitivity, and specificity. The experiments prove that the proposed methodology for PAUT testing for welding defect classification is obtained more accurately and efficiently across existing methodologies by providing numerical and graphical results.\",\"PeriodicalId\":10680,\"journal\":{\"name\":\"Concurrent Engineering\",\"volume\":\"60 1\",\"pages\":\"229 - 236\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrent Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1063293X211073714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrent Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1063293X211073714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,无损检测(NDT)因其在检测外部和内部焊接缺陷时不破坏物体并保持其原始结构和聚集的效率和准确性而成为最受欢迎的技术。无损检测环境通常是有害的,其特点是电磁挥发场大,辐射发射不稳定性高,热量高。因此,可以识别和实践合适的无损检测方法。本文提出了一种新的基于相控阵超声检测的无损检测算法,以获得合适的检测属性。在提出的方法中,碳钢焊接断面综合生产各种缺陷,并使用PAUT方法进行测试。从PAUT设备获取的信号具有噪声。提出了自适应最小均方滤波器(ALMS)对PAUT信号进行滤波,去除随机噪声和高斯噪声。ALMS滤波器是低通滤波器(LPF)、高通滤波器(HPF)和带通滤波器(BPF)的组合。利用经验小波变换(EWT)算法将时域信号转换为频域信号,提取出更多的特征。在频域信号中,采用一阶和二阶特征提取技术提取各种特征进行进一步分类。提出了一种基于深度学习的PAUT信号分类方法。基于PAUT信号特征,采用深度卷积神经网络(Deep Convolution Neural Network, DCNN)进行进一步分类。DCNN将根据焊接信号是否有缺陷进行分类。混淆矩阵(CM)用于估计分类性能的测量,如计算精度,灵敏度和特异性。实验结果表明,该方法能较现有方法更准确、更高效地进行焊接缺陷分类,并能提供数值和图形结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phased array ultrasonic test signal enhancement and classification using Empirical Wavelet Transform and Deep Convolution Neural Network
In the recent past, Non-Destructive Testing (NDT) has become the most popular technique due to its efficiency and accuracy without destroying the object and maintaining its original structure and gathering while examining external and internal welding defects. Generally, the NDT environment is harmful which is distinguished by huge volatile fields of electromagnetic, elevated radiation emission instability, and elevated heat. Therefore, a suitable NDT approach could be recognized and practiced. In this paper, a novel algorithm is proposed based on a Phased array ultrasonic test (PAUT) for NDT to attain the proper test attributes. In the proposed methodology, the carbon steel welding section is synthetically produced with various defects and tested using the PAUT method. The signals which are acquired from the PAUT device are having noise. The Adaptive Least Mean Square (ALMS) filter is proposed to filter PAUT signal to eliminate random noise and Gaussian noise. The ALMS filter is the combination of low pass filter (LPF), high pass filter (HPF), and bandpass filter (BPF). The time-domain PAUT signal is converted into a frequency-domain signal to extract more features by applying the Empirical Wavelet Transform (EWT) algorithm. In the frequency domain signal, first order and second order features extraction techniques are applied to extract various features for further classification. The Deep Learning methodology is proposed for the classification of PAUT signals. Based on the PAUT signal features, the Deep Convolution Neural Network (DCNN) is applied for further classification. The DCNN will classify the welding signal as to whether it is defective or non-defective. The Confusion Matrix (CM) is used for the estimation of measurement of performance of classification as calculating accuracy, sensitivity, and specificity. The experiments prove that the proposed methodology for PAUT testing for welding defect classification is obtained more accurately and efficiently across existing methodologies by providing numerical and graphical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensitivity study of process parameters of wire arc additive manufacturing using probabilistic deep learning and uncertainty quantification Retraction Notice Decision-making solutions based artificial intelligence and hybrid software for optimal sizing and energy management in a smart grid system Harness collaboration between manufacturing Small and medium-sized enterprises through a collaborative platform based on the business model canvas Research on the evolution law of cloud manufacturing service ecosystem based on multi-agent behavior simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1