甘草提取物抗新型冠状病毒肺炎的体外抗炎预测

Mansoureh Nazari
{"title":"甘草提取物抗新型冠状病毒肺炎的体外抗炎预测","authors":"Mansoureh Nazari","doi":"10.33084/jmd.v1i2.3154","DOIUrl":null,"url":null,"abstract":"Due to its anti-inflammation effect, Glycyrrhiza extract is one of the natural extracts that may potentially combat coronavirus disease in 2019 (COVID-19). In the current article, we evaluate in silico (molecular docking) properties of active compounds available in Glycyrrhiza, native to Western Asia, North Africa, and Southern Europe, and compare its anti-inflammation effect with remdesivir as positive compounds based on molecular docking characteristics. The main active compounds were selected based on their significant roles in the pharmacological effects of Glycyrrhiza. The results obtained in this study demonstrated that most of the studied main compounds interacted stronger than selected remdesivir to inhibit the spike protein in COVID-19. The combined scores (binding affinity and drug-likeness properties of the ligand, demonstrated to be the potentially possible COVID-19 inhibitor compared with positive control. The active site analysis of the interactions also showed that Glycyrrhiza extract containing active compounds might have therapeutic effects against COVID-19.","PeriodicalId":16421,"journal":{"name":"Journal of Molecular Docking","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Silico Anti-Inflammation Prediction of Glycyrrhiza Extracts Against Covid-19\",\"authors\":\"Mansoureh Nazari\",\"doi\":\"10.33084/jmd.v1i2.3154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to its anti-inflammation effect, Glycyrrhiza extract is one of the natural extracts that may potentially combat coronavirus disease in 2019 (COVID-19). In the current article, we evaluate in silico (molecular docking) properties of active compounds available in Glycyrrhiza, native to Western Asia, North Africa, and Southern Europe, and compare its anti-inflammation effect with remdesivir as positive compounds based on molecular docking characteristics. The main active compounds were selected based on their significant roles in the pharmacological effects of Glycyrrhiza. The results obtained in this study demonstrated that most of the studied main compounds interacted stronger than selected remdesivir to inhibit the spike protein in COVID-19. The combined scores (binding affinity and drug-likeness properties of the ligand, demonstrated to be the potentially possible COVID-19 inhibitor compared with positive control. The active site analysis of the interactions also showed that Glycyrrhiza extract containing active compounds might have therapeutic effects against COVID-19.\",\"PeriodicalId\":16421,\"journal\":{\"name\":\"Journal of Molecular Docking\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Docking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33084/jmd.v1i2.3154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Docking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33084/jmd.v1i2.3154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于其抗炎作用,甘草提取物是可能对抗2019年冠状病毒病(COVID-19)的天然提取物之一。在本文中,我们评估了原产于西亚、北非和南欧的甘草中有效化合物的分子对接特性,并基于分子对接特性比较了其与瑞德西韦作为阳性化合物的抗炎作用。根据其在甘草药理作用中的重要作用筛选出主要活性化合物。本研究结果表明,大多数被研究的主要化合物在抑制COVID-19刺突蛋白方面的相互作用强于所选的瑞德西韦。与阳性对照相比,该配体的结合亲和力和药物相似特性的综合得分被证明是潜在的COVID-19抑制剂。相互作用的活性位点分析也表明含有活性化合物的甘草提取物可能具有抗COVID-19的治疗作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In Silico Anti-Inflammation Prediction of Glycyrrhiza Extracts Against Covid-19
Due to its anti-inflammation effect, Glycyrrhiza extract is one of the natural extracts that may potentially combat coronavirus disease in 2019 (COVID-19). In the current article, we evaluate in silico (molecular docking) properties of active compounds available in Glycyrrhiza, native to Western Asia, North Africa, and Southern Europe, and compare its anti-inflammation effect with remdesivir as positive compounds based on molecular docking characteristics. The main active compounds were selected based on their significant roles in the pharmacological effects of Glycyrrhiza. The results obtained in this study demonstrated that most of the studied main compounds interacted stronger than selected remdesivir to inhibit the spike protein in COVID-19. The combined scores (binding affinity and drug-likeness properties of the ligand, demonstrated to be the potentially possible COVID-19 inhibitor compared with positive control. The active site analysis of the interactions also showed that Glycyrrhiza extract containing active compounds might have therapeutic effects against COVID-19.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Docking and Dynamics Study of Phytochemicals as Potent Inhibitors against SARS-CoV-2 Main Protease Identification of Bioactive Molecules from Combretum micranthum as Potential Inhibitors of α-amylase through Computational Investigations De Novo Class of Momordicoside with Potent and Selective Tumor Cell Growth Inhibitory Activity as Pyruvate Kinase Muscle Isozyme 2 and Anti-apoptotic Myeloid Leukemia 1 Inhibitors Phytochemical Molecules Binding with the Proteins of Mycolic Acid Synthesis Pathway of Mycobacterium tuberculosis Alantolactone: A Potential Multitarget Drug candidate for Prevention of SARS-CoV-2 Cell Entry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1